pytorch 自定义卷积核进行卷积操作方式

一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的。

二 需要自己定义卷积核的目的:目前是需要通过一个VGG网络提取特征特后需要对其进行高斯卷积,卷积后再继续输入到网络中训练。

三 解决方案。使用

torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)

这里注意下weight的参数。与nn.Conv2d的参数不一样

可以发现F.conv2d可以直接输入卷积的权值weight,也就是卷积核。那么接下来就要首先生成一个高斯权重了。这里不直接一步步写了,直接输入就行。

kernel = [[0.03797616, 0.044863533, 0.03797616],
     [0.044863533, 0.053, 0.044863533],
     [0.03797616, 0.044863533, 0.03797616]]

四 完整代码

class GaussianBlur(nn.Module):
  def __init__(self):
    super(GaussianBlur, self).__init__()
    kernel = [[0.03797616, 0.044863533, 0.03797616],
         [0.044863533, 0.053, 0.044863533],
         [0.03797616, 0.044863533, 0.03797616]]
    kernel = torch.FloatTensor(kernel).unsqueeze(0).unsqueeze(0)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)

  def forward(self, x):
    x1 = x[:, 0]
    x2 = x[:, 1]
    x3 = x[:, 2]
    x1 = F.conv2d(x1.unsqueeze(1), self.weight, padding=2)
    x2 = F.conv2d(x2.unsqueeze(1), self.weight, padding=2)
    x3 = F.conv2d(x3.unsqueeze(1), self.weight, padding=2)
    x = torch.cat([x1, x2, x3], dim=1)
    return x

这里为了网络模型需要写成了一个类,这里假设输入的x也就是经过网络提取后的三通道特征图(当然不一定是三通道可以是任意通道)

如果是任意通道的话,使用torch.expand()向输入的维度前面进行扩充。如下:

  def blur(self, tensor_image):
    kernel = [[0.03797616, 0.044863533, 0.03797616],
        [0.044863533, 0.053, 0.044863533],
        [0.03797616, 0.044863533, 0.03797616]]

    min_batch=tensor_image.size()[0]
    channels=tensor_image.size()[1]
    out_channel=channels
    kernel = torch.FloatTensor(kernel).expand(out_channel,channels,3,3)
    self.weight = nn.Parameter(data=kernel, requires_grad=False)

    return F.conv2d(tensor_image,self.weight,1,1)

以上这篇pytorch 自定义卷积核进行卷积操作方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch实现各种2d卷积示例

    普通卷积 使用nn.Conv2d(),一般还会接上BN和ReLu 参数量NNCin*Cout+Cout(如果有bias,相对来说表示对参数量影响很小,所以后面不考虑) class ConvBNReLU(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ConvBNReLU, self).__init__() self.op = nn.Sequential( n

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • Pytorch卷积层手动初始化权值的实例

    由于研究关系需要自己手动给卷积层初始化权值,但是好像博客上提到的相关文章比较少(大部分都只提到使用nn.init里的按照一定分布初始化方法),自己参考了下Pytorch的官方文档,发现有两种方法吧. 所以mark下. import torch import torch.nn as nn import torch.optim as optim import numpy as np # 第一一个卷积层,我们可以看到它的权值是随机初始化的 w=torch.nn.Conv2d(2,2,3,padding

  • PyTorch中反卷积的用法详解

    pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.

  • pytorch 如何自定义卷积核权值参数

    pytorch中构建卷积层一般使用nn.Conv2d方法,有些情况下我们需要自定义卷积核的权值weight,而nn.Conv2d中的卷积参数是不允许自定义的,此时可以使用torch.nn.functional.conv2d简称F.conv2d torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) F.conv2d可以自己输入且也必须要求自己输入卷积权值weig

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • Pytorch: 自定义网络层实例

    自定义Autograd函数 对于浅层的网络,我们可以手动的书写前向传播和反向传播过程.但是当网络变得很大时,特别是在做深度学习时,网络结构变得复杂.前向传播和反向传播也随之变得复杂,手动书写这两个过程就会存在很大的困难.幸运地是在pytorch中存在了自动微分的包,可以用来解决该问题.在使用自动求导的时候,网络的前向传播会定义一个计算图(computational graph),图中的节点是张量(tensor),两个节点之间的边对应了两个张量之间变换关系的函数.有了计算图的存在,张量的梯度计算也

  • Pytorch自定义CNN网络实现猫狗分类详解过程

    目录 前言 一. 数据预处理 二. 定义网络 三. 训练模型 前言 数据集下载地址: 链接: https://pan.baidu.com/s/17aglKyKFvMvcug0xrOqJdQ?pwd=6i7m Dogs vs. Cats(猫狗大战)来源Kaggle上的一个竞赛题,任务为给定一个数据集,设计一种算法中的猫狗图片进行判别. 数据集包括25000张带标签的训练集图片,猫和狗各125000张,标签都是以cat or dog命名的.图像为RGB格式jpg图片,size不一样.截图如下: 一.

  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类

  • pytorch 自定义参数不更新方式

    nn.Module中定义参数:不需要加cuda,可以求导,反向传播 class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print("no---------------------------------------------------",self.w1.data, self.w1.grad) 下面这个例子说明中间变量可能没有梯度,但是最终变量有梯度

  • pytorch自定义二值化网络层方式

    任务要求: 自定义一个层主要是定义该层的实现函数,只需要重载Function的forward和backward函数即可,如下: import torch from torch.autograd import Function from torch.autograd import Variable 定义二值化函数 class BinarizedF(Function): def forward(self, input): self.save_for_backward(input) a = torch

  • Pytorch 实现冻结指定卷积层的参数

    python代码 for i, para in enumerate(self._net.module.features.parameters()): if i < 16: para.requires_grad = False else: para.requires_grad = True # Solver. # self._solver = torch.optim.SGD( # self._net.parameters(), lr=self._options['base_lr'], # mome

随机推荐