Pytorch 实现权重初始化

在TensorFlow中,权重的初始化主要是在声明张量的时候进行的。 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重。通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性。

1、不初始化的效果

在Pytorch中,定义一个tensor,不进行初始化,打印看看结果:

w = torch.Tensor(3,4)
print (w)

可以看到这时候的初始化的数值都是随机的,而且特别大,这对网络的训练必定不好,最后导致精度提不上,甚至损失无法收敛。

2、初始化的效果

PyTorch提供了多种参数初始化函数:

torch.nn.init.constant(tensor, val)
torch.nn.init.normal(tensor, mean=0, std=1)
torch.nn.init.xavier_uniform(tensor, gain=1)

等等。详细请参考:http://pytorch.org/docs/nn.html#torch-nn-init

注意上面的初始化函数的参数tensor,虽然写的是tensor,但是也可以是Variable类型的。而神经网络的参数类型Parameter是Variable类的子类,所以初始化函数可以直接作用于神经网络参数。实际上,我们初始化也是直接去初始化神经网络的参数。

让我们试试效果:

w = torch.Tensor(3,4)
torch.nn.init.normal_(w)
print (w)

3、初始化神经网络的参数

对神经网络的初始化往往放在模型的__init__()函数中,如下所示:

class Net(nn.Module):

def __init__(self, block, layers, num_classes=1000):
  self.inplanes = 64
  super(Net, self).__init__()
  ***
  *** #定义自己的网络层
  ***

  for m in self.modules():
    if isinstance(m, nn.Conv2d):
      n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
      m.weight.data.normal_(0, math.sqrt(2. / n))
    elif isinstance(m, nn.BatchNorm2d):
      m.weight.data.fill_(1)
      m.bias.data.zero_()

***
*** #定义后续的函数
***

也可以采取另一种方式:

定义一个权重初始化函数,如下:

def weights_init(m):
  classname = m.__class__.__name__
  if classname.find('Conv2d') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)
  elif classname.find('Linear') != -1:
    init.xavier_normal_(m.weight.data)
    init.constant_(m.bias.data, 0.0)

在模型声明时,调用初始化函数,初始化神经网络参数:

model = Net(*****)
model.apply(weights_init)

以上这篇Pytorch 实现权重初始化就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • pytorch自定义初始化权重的方法

    在常见的pytorch代码中,我们见到的初始化方式都是调用init类对每层所有参数进行初始化.但是,有时我们有些特殊需求,比如用某一层的权重取优化其它层,或者手动指定某些权重的初始值. 核心思想就是构造和该层权重同一尺寸的矩阵去对该层权重赋值.但是,值得注意的是,pytorch中各层权重的数据类型是nn.Parameter,而不是Tensor或者Variable. import torch import torch.nn as nn import torch.optim as optim imp

  • 把vgg-face.mat权重迁移到pytorch模型示例

    最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face.mat转到pytorch模型的代码 #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Thu May 10 10:41:40 2018 @author: hy """ import torc

  • python PyTorch参数初始化和Finetune

    前言 这篇文章算是论坛PyTorch Forums关于参数初始化和finetune的总结,也是我在写代码中用的算是"最佳实践"吧.最后希望大家没事多逛逛论坛,有很多高质量的回答. 参数初始化 参数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了data,grad等借口,这就意味着我们可以直接对这些参数进行操作赋值了.这就是PyTorch简洁高效所在. 所以我们可以进行如下操作进行初始化,当然其实有其他的方法,但是这种方法

  • Pytorch 实现权重初始化

    在TensorFlow中,权重的初始化主要是在声明张量的时候进行的. 而PyTorch则提供了另一种方法:首先应该声明张量,然后修改张量的权重.通过调用torch.nn.init包中的多种方法可以将权重初始化为直接访问张量的属性. 1.不初始化的效果 在Pytorch中,定义一个tensor,不进行初始化,打印看看结果: w = torch.Tensor(3,4) print (w) 可以看到这时候的初始化的数值都是随机的,而且特别大,这对网络的训练必定不好,最后导致精度提不上,甚至损失无法收敛

  • Pytorch .pth权重文件的使用解析

    pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件 其中保存了optimizer和scheduler,所以再次加载此文件时会使用之前的学习率. 我们只需要权重,也就是model部分,将其导出就可以了 import torch original = torch.load('path/to/your/c

  • keras之权重初始化方式

    在神经网络训练中,好的权重 初始化会加速训练过程. 下面说一下kernel_initializer 权重初始化的方法. 不同的层可能使用不同的关键字来传递初始化方法,一般来说指定初始化方法的关键字是kernel_initializer 和 bias_initializer model.add(Dense(64, kernel_initializer=initializers.random_normal(stddev=0.01))) # also works; will use the defau

  • pytorch权值初始化weight initilzation

    目录 pytorch中的权值初始化 pytorch中的权值初始化 官方论坛对weight-initilzation的讨论 torch.nn.Module.apply(fn) torch.nn.Module.apply(fn) # 递归的调用weights_init函数,遍历nn.Module的submodule作为参数 # 常用来对模型的参数进行初始化 # fn是对参数进行初始化的函数的句柄,fn以nn.Module或者自己定义的nn.Module的子类作为参数 # fn (Module ->

  • pytorch  网络参数 weight bias 初始化详解

    权重初始化对于训练神经网络至关重要,好的初始化权重可以有效的避免梯度消失等问题的发生. 在pytorch的使用过程中有几种权重初始化的方法供大家参考. 注意:第一种方法不推荐.尽量使用后两种方法. # not recommend def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.

  • Pytorch - TORCH.NN.INIT 参数初始化的操作

    路径: https://pytorch.org/docs/master/nn.init.html#nn-init-doc 初始化函数:torch.nn.init # -*- coding: utf-8 -*- """ Created on 2019 @author: fancp """ import torch import torch.nn as nn w = torch.empty(3,5) #1.均匀分布 - u(a,b) #torch.n

  • Pytorch模型定义与深度学习自查手册

    目录 定义神经网络 权重初始化 方法1:net.apply(weights_init) 方法2:在网络初始化的时候进行参数初始化 常用的操作 利用nn.Parameter()设计新的层 nn.Flatten nn.Sequential 常用的层 全连接层nn.Linear() torch.nn.Dropout 卷积torch.nn.ConvNd() 池化 最大池化torch.nn.MaxPoolNd() 均值池化torch.nn.AvgPoolNd() 反池化 最大值反池化nn.MaxUnpoo

  • 对pytorch中的梯度更新方法详解

    背景 使用pytorch时,有一个yolov3的bug,我认为涉及到学习率的调整.收集到tencent yolov3和mxnet开源的yolov3,两个优化器中的学习率设置不一样,而且使用GPU数目和batch的更新也不太一样.据此,我简单的了解了下pytorch的权重梯度的更新策略,看看能否一窥究竟. 对代码说明 共三个实验,分布写在代码中的(一)(二)(三)三个地方.运行实验时注释掉其他两个 实验及其结果 实验(三): 不使用zero_grad()时,grad累加在一起,官网是使用accum

  • Pytorch转keras的有效方法,以FlowNet为例讲解

    Pytorch凭借动态图机制,获得了广泛的使用,大有超越tensorflow的趋势,不过在工程应用上,TF仍然占据优势.有的时候我们会遇到这种情况,需要把模型应用到工业中,运用到实际项目上,TF支持的PB文件和TF的C++接口就成为了有效的工具.今天就给大家讲解一下Pytorch转成Keras的方法,进而我们也可以获得Pb文件,因为Keras是支持tensorflow的,我将会在下一篇博客讲解获得Pb文件,并使用Pb文件的方法. Pytorch To Keras 首先,我们必须有清楚的认识,网上

  • 解决pytorch 损失函数中输入输出不匹配的问题

    一.pytorch 损失函数中输入输出不匹配问题 File "C:\Users\Rain\AppData\Local\Programs\Python\Anaconda.3.5.1\envs\python35\python35\lib\site-packages\torch\nn\modules\module.py", line 491, in __call__  result = self.forward(*input, **kwargs) File "C:\Users\Ra

随机推荐