Python矩阵常见运算操作实例总结

本文实例讲述了Python矩阵常见运算操作。分享给大家供大家参考,具体如下:

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。

一.numpy的导入和使用

from numpy import *;#导入numpy的库函数
import numpy as np; #这个方式使用numpy的函数时,需要以np.开头。

二.矩阵的创建

由一维或二维数据创建矩阵

from numpy import *;
a1=array([1,2,3]);
a1=mat(a1);

创建常见的矩阵

data1=mat(zeros((3,3)));
#创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data2=mat(ones((2,4)));
#创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
data3=mat(random.rand(2,2));
#这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix
data4=mat(random.randint(10,size=(3,3)));
#生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数
data5=mat(random.randint(2,8,size=(2,5));
#产生一个2-8之间的随机整数矩阵
data6=mat(eye(2,2,dtype=int));
#产生一个2*2的对角矩阵
a1=[1,2,3];
a2=mat(diag(a1));
#生成一个对角线为1、2、3的对角矩阵

三.常见的矩阵运算

1. 矩阵相乘

a1=mat([1,2]);
a2=mat([[1],[2]]);
a3=a1*a2;
#1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵

2. 矩阵点乘

矩阵对应元素相乘

a1=mat([1,1]);
a2=mat([2,2]);
a3=multiply(a1,a2);

矩阵点乘

a1=mat([2,2]);
a2=a1*2;

3.矩阵求逆,转置

矩阵求逆

a1=mat(eye(2,2)*0.5);
a2=a1.I;
#求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵

矩阵转置

a1=mat([[1,1],[0,0]]);
a2=a1.T;

4.计算矩阵对应行列的最大、最小值、和。

a1=mat([[1,1],[2,3],[4,2]]);

计算每一列、行的和

a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵
a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵
a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值

计算最大、最小值和索引

a1.max();//计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
a2=max(a1[:,1]);//计算第二列的最大值,这里得到的是一个1*1的矩阵
a1[1,:].max();//计算第二行的最大值,这里得到的是一个一个数值
np.max(a1,0);//计算所有列的最大值,这里使用的是numpy中的max函数
np.max(a1,1);//计算所有行的最大值,这里得到是一个矩阵
np.argmax(a1,0);//计算所有列的最大值对应在该列中的索引
np.argmax(a1[1,:]);//计算第二行中最大值对应在改行的索引

5.矩阵的分隔和合并

矩阵的分隔,同列表和数组的分隔一致。

a=mat(ones((3,3)));
b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素

矩阵的合并

a=mat(ones((2,2)));
b=mat(eye(2));
c=vstack((a,b));//按列合并,即增加行数
d=hstack((a,b));//按行合并,即行数不变,扩展列数

四.矩阵、列表、数组的转换

列表可以修改,并且列表中元素可以使不同类型的数据,如下:

l1=[[1],'hello',3];

numpy中数组,同一个数组中所有元素必须为同一个类型,有几个常见的属性:

a=array([[2],[1]]);
dimension=a.ndim;
m,n=a.shape;
number=a.size;//元素总个数
str=a.dtype;//元素的类型

numpy中的矩阵也有与数组常见的几个属性。

它们之间的转换:

a1=[[1,2],[3,2],[5,2]];//列表
a2=array(a1);//将列表转换成二维数组
a3=array(a1);//将列表转化成矩阵
a4=array(a3);//将矩阵转换成数组
a5=a3.tolist();//将矩阵转换成列表
a6=a2.tolist();//将数组转换成列表

这里可以发现三者之间的转换是非常简单的,这里需要注意的是,当列表是一维的时候,将它转换成数组和矩阵后,再通过tolist()转换成列表是不相同的,需要做一些小小的修改。如下:

a1=[1,2,3];
a2=array(a1);
a3=mat(a1);
a4=a2.tolist();//这里得到的是[1,2,3]
a5=a3.tolist();//这里得到的是[[1,2,3]]
a6=(a4 == a5);//a6=False
a7=(a4 is a5[0]);//a7=True,a5[0]=[1,2,3]

矩阵转换成数值,存在以下一种情况:

dataMat=mat([1]);
val=dataMat[0,0];//这个时候获取的就是矩阵的元素的数值,而不再是矩阵的类型

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python实现矩阵乘法的方法

    本文实例讲述了python实现矩阵乘法的方法.分享给大家供大家参考.具体实现方法如下: def matrixMul(A, B): res = [[0] * len(B[0]) for i in range(len(A))] for i in range(len(A)): for j in range(len(B[0])): for k in range(len(B)): res[i][j] += A[i][k] * B[k][j] return res def matrixMul2(A, B):

  • Python使用稀疏矩阵节省内存实例

    推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用: 1.不能很好的同时支持data[i, ...].data[..., j].data[i, j]快速切片: 2.由于数据保存在内存中,不能很好的支持海量数据处理. 要支持data[i, ...].data[..., j]的快速切片,需要i或者j的数据集中存储:同时,为了保存海量的数据,也需

  • Python中shape计算矩阵的方法示例

    本文实例讲述了Python中shape计算矩阵的方法.分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>> from numpy import * >>> import operator >>> a =mat([[1,2,3],[5,6,9]]) >>> a matrix([[1, 2, 3], [5, 6, 9]]) >>> shape(a) (2,

  • Python NumPy库安装使用笔记

    1. NumPy安装 使用pip包管理工具进行安装 复制代码 代码如下: $ sudo pip install numpy 使用pip包管理工具安装ipython(交互式shell工具) 复制代码 代码如下: $ sudo pip instlal ipython $ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块 2. NumPy基础 2.1. NumPy数组对象 具体解释可以看每一行代码后的解释和输出 复制代码 代码如下:

  • Python使用迭代器打印螺旋矩阵的思路及代码示例

    思路 螺旋矩阵是指一个呈螺旋状的矩阵,它的数字由第一行开始到右边不断变大,向下变大, 向左变大,向上变大,如此循环. 螺旋矩阵用二维数组表示,坐标(x,y),即(x轴坐标,y轴坐标). 顺时针螺旋的方向是->右,下,左,上,用数值表示即是x加1格(1,0),y加1格(0,1),x减1格(-1,0),y减1格(0,-1). 坐标从(0,0)开始行走,当超出范围或遇到障碍时切换方向. 螺旋矩阵的打印首先要对n*n的数组进行赋值,根据规律可以看出,每一层都是按照右->下->左->上的顺序

  • Python 稀疏矩阵-sparse 存储和转换

    稀疏矩阵-sparsep from scipy import sparse 稀疏矩阵的储存形式 在科学与工程领域中求解线性模型时经常出现许多大型的矩阵,这些矩阵中大部分的元素都为0,被称为稀疏矩阵.用NumPy的ndarray数组保存这样的矩阵,将很浪费内存,由于矩阵的稀疏特性,可以通过只保存非零元素的相关信息,从而节约内存的使用.此外,针对这种特殊结构的矩阵编写运算函数,也可以提高矩阵的运算速度. scipy.sparse库中提供了多种表示稀疏矩阵的格式,每种格式都有不同的用处,其中dok_m

  • Python创建对称矩阵的方法示例【基于numpy模块】

    本文实例讲述了Python创建对称矩阵的方法.分享给大家供大家参考,具体如下: 对称(实对称)矩阵也即: step 1:创建一个方阵 >>> import numpy as np >>> X = np.random.rand(5**2).reshape(5, 5) >>> X array([[ 0.26984148, 0.25408384, 0.12428487, 0.0194565 , 0.91287708], [ 0.31837673, 0.354

  • Python列表list解析操作示例【整数操作、字符操作、矩阵操作】

    本文实例讲述了Python列表list解析操作.分享给大家供大家参考,具体如下: #coding=utf8 print ''''' Python在一行中使用一个for循环将所有值放到一个列表中. 列表解析的语法如下: [expr for iter_var in iterable] [expr for iter_var in iterable if cond_expr] ----------------------------------------------------------------

  • Python实现的矩阵类实例

    本文实例讲述了Python实现的矩阵类.分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算.当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考http://www.jb51.net/article/66236.htm). 我写这个矩阵类,并不是打算重新造一个轮子,只是作为一个练习,记录在此. 注:这个类的函数还没全部实现,慢慢在完善吧. 全部代码: import copy class Matrix: '''矩阵类''' def __init__(sel

  • python实现稀疏矩阵示例代码

    工程实践中,多数情况下,大矩阵一般都为稀疏矩阵,所以如何处理稀疏矩阵在实际中就非常重要.本文以Python里中的实现为例,首先来探讨一下稀疏矩阵是如何存储表示的. 1.sparse模块初探 python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生.本文的大部分内容,其实就是基于sparse模块而来的. 第一步自然就是导入sparse模块 >>> from scipy import sparse 然后help一把,先来看个大概 >>> h

  • Python表示矩阵的方法分析

    本文实例讲述了Python表示矩阵的方法.分享给大家供大家参考,具体如下: 在c语言中,表示个"整型3行4列"的矩阵,可以这样声明:int  a[3][4];在python中一不能声明变量int,二不能列出维数.可以利用列表中夹带列表形式表示.例如: 表示矩阵 ,可以这样: count = 1 a = [] for i in range(0, 3): tmp = [] for j in range(0, 3): tmp.append(count) count += 1 a.append

  • Python中的Numpy入门教程

    1.Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数.如果接触过matlab.scilab,那么numpy很好入手. 在以下的代码示例中,总是先导入了numpy: 复制代码 代码如下: >>> import numpy as np>>> print np.version.version1.6.2

随机推荐