MongoDB聚合功能浅析

MongoDB数据库功能强大!除了基本的查询功能之外,还提供了强大的聚合功能。这里简单介绍一下count、distinct和group。

1.count:

--在空集合中,count返回的数量为0。
  > db.test.count()
  0
  --测试插入一个文档后count的返回值。
  > db.test.insert({"test":1})
  > db.test.count()
  1
  > db.test.insert({"test":2})
  > db.test.count()
  2
  --count和find一样,也接受条件。从结果可以看出,只有符合条件的文档参与了计算。
  > db.test.count({"test":1})
  1

2.distinct:
    distinct用来找出给定键的所有不同的值。使用时也必须指定集合和键。

--为了便于后面的测试,先清空测试集合。
  > db.test.remove()
  > db.test.count()
  0
  --插入4条测试数据。请留意Age字段。
  > db.test.insert({"name":"Ada", "age":20})
  > db.test.insert({"name":"Fred", "age":35})
  > db.test.insert({"name":"Andy", "age":35})
  > db.test.insert({"name":"Susan", "age":60})
  --distinct命令必须指定集合名称,如test,以及需要区分的字段,如:age。
  --下面的命令将基于test集合中的age字段执行distinct命令。
  > db.runCommand({"distinct":"test", "key":"age"})
  {
      "values" : [
          20,
          35,
          60
      ],
      "stats" : {
          "n" : 4,
          "nscanned" : 4,
          "nscannedObjects" : 4,
          "timems" : 0,
          "cursor" : "BasicCursor"
      },
      "ok" : 1
  }

3.group:
    group做的聚合有些复杂。先选定分组所依据的键,此后MongoDB就会将集合依据选定键值的不同分成若干组。然后可以通过聚合每一组内的文档,产生一个结果文档。

--这里是准备的测试数据
  > db.test.remove()
  > db.test.insert({"day" : "2012-08-20", "time" : "2012-08-20 03:20:40", "price" : 4.23})
  > db.test.insert({"day" : "2012-08-21", "time" : "2012-08-21 11:28:00", "price" : 4.27})
  > db.test.insert({"day" : "2012-08-20", "time" : "2012-08-20 05:00:00", "price" : 4.10})
  > db.test.insert({"day" : "2012-08-22", "time" : "2012-08-22 05:26:00", "price" : 4.30})
  > db.test.insert({"day" : "2012-08-21", "time" : "2012-08-21 08:34:00", "price" : 4.01})
  --这里将用day作为group的分组键,然后取出time键值为最新时间戳的文档,同时也取出该文档的price键值。
  > db.test.group( {
  ... "key" : {"day":true},      --如果是多个字段,可以为{"f1":true,"f2":true}
  ... "initial" : {"time" : "0"},    --initial表示$reduce函数参数prev的初始值。每个组都有一份该初始值。
  ... "$reduce" : function(doc,prev) { --reduce函数接受两个参数,doc表示正在迭代的当前文档,prev表示累加器文档。
  ...   if (doc.time > prev.time) {
  ...     prev.day = doc.day
  ...     prev.price = doc.price;
  ...     prev.time = doc.time;
  ...   }
  ... } } )
  [
    {
      "day" : "2012-08-20",
      "time" : "2012-08-20 05:00:00",
      "price" : 4.1
    },
    {
      "day" : "2012-08-21",
      "time" : "2012-08-21 11:28:00",
      "price" : 4.27
    },
    {
      "day" : "2012-08-22",
      "time" : "2012-08-22 05:26:00",
      "price" : 4.3
    }
  ]
  --下面的例子是统计每个分组内文档的数量。
  > db.test.group( {
  ... key: { day: true},
  ... initial: {count: 0},
  ... reduce: function(obj,prev){ prev.count++;},
  ... } )
  [
    {
      "day" : "2012-08-20",
      "count" : 2
    },
    {
      "day" : "2012-08-21",
      "count" : 2
    },
    {
      "day" : "2012-08-22",
      "count" : 1
    }
  ]
  --最后一个是通过完成器修改reduce结果的例子。
  > db.test.group( {
  ... key: { day: true},
  ... initial: {count: 0},
  ... reduce: function(obj,prev){ prev.count++;},
  ... finalize: function(out){ out.scaledCount = out.count * 10 } --在结果文档中新增一个键。
  ... } )
  [
    {
      "day" : "2012-08-20",
      "count" : 2,
      "scaledCount" : 20
    },
    {
      "day" : "2012-08-21",
      "count" : 2,
      "scaledCount" : 20
    },
    {
      "day" : "2012-08-22",
      "count" : 1,
      "scaledCount" : 10
    }
  ]
(0)

相关推荐

  • MongoDB入门教程之聚合和游标操作介绍

    今天跟大家分享一下mongodb中比较好玩的知识,主要包括:聚合,游标. 一: 聚合 常见的聚合操作跟sql server一样,有:count,distinct,group,mapReduce. <1> count count是最简单,最容易,也是最常用的聚合工具,它的使用跟我们C#里面的count使用简直一模一样.  <2> distinct 这个操作相信大家也是非常熟悉的,指定了谁,谁就不能重复,直接上图.  <3> group 在mongodb里面做group操作

  • Mongodb中MapReduce实现数据聚合方法详解

    Mongodb是针对大数据量环境下诞生的用于保存大数据量的非关系型数据库,针对大量的数据,如何进行统计操作至关重要,那么如何从Mongodb中统计一些数据呢? 在Mongodb中,给我们提供了三种用于数据聚合的方式: (1)简单的用户聚合函数: (2)使用aggregate进行统计: (3)使用mapReduce进行统计: 今天我们首先来讲讲mapReduce是如何统计,在后续的文章中,将另起文章进行相关说明. MapReduce是啥呢?以我的理解,其实就是对集合中的各个满足条件的文档进行预处理

  • mongodb聚合_动力节点Java学院整理

    今天跟大家分享一下mongodb中比较好玩的知识,主要包括:聚合,游标. 一:聚合 常见的聚合操作跟sql server一样,有:count,distinct,group,mapReduce. <1> count count是最简单,最容易,也是最常用的聚合工具,它的使用跟我们C#里面的count使用简直一模一样. <2> distinct 这个操作相信大家也是非常熟悉的,指定了谁,谁就不能重复,直接上图. <3> group 在mongodb里面做group操作有点小

  • MongoDB的聚合框架Aggregation Framework入门学习教程

    1. 聚合框架 使用聚合框架对集合中的文档进行变换和组合,可以用多个构件创建一个管道(pipeline),用于对一连串的文档进行处理.这些构件包括筛选(filtering),投射(projecting),分组(grouping),排序(sorting),限制(limiting),跳过(skipping). 例如一个保存着动物类型的集合,希望找出最多的那种动物,假设每种动物被保存为一个mongodb文档,可以按照以下步骤创建管道. 1)将每个文档的动物名称映射出来. 2)安装名称排序,统计每个名称

  • Mongodb聚合函数count、distinct、group如何实现数据聚合操作

    上篇文章给大家介绍了Mongodb中MapReduce实现数据聚合方法详解,我们提到过Mongodb中进行数据聚合操作的一种方式--MapReduce,但是在大多数日常使用过程中,我们并不需要使用MapReduce来进行操作.在这边文章中,我们就简单说说用自带的聚合函数进行数据聚合操作的实现. MongoDB除了基本的查询功能之外,还提供了强大的聚合功能.Mongodb中自带的基本聚合函数有三种:count.distinct和group.下面我们分别来讲述一下这三个基本聚合函数. (1)coun

  • MongoDB教程之聚合(count、distinct和group)

    1. count: 复制代码 代码如下: --在空集合中,count返回的数量为0.     > db.test.count()     0     --测试插入一个文档后count的返回值.     > db.test.insert({"test":1})     > db.test.count()     1     > db.test.insert({"test":2})     > db.test.count()     2  

  • MongoDB聚合功能浅析

    MongoDB数据库功能强大!除了基本的查询功能之外,还提供了强大的聚合功能.这里简单介绍一下count.distinct和group. 1.count: --在空集合中,count返回的数量为0. > db.test.count() 0 --测试插入一个文档后count的返回值. > db.test.insert({"test":1}) > db.test.count() 1 > db.test.insert({"test":2}) >

  • MongoDB聚合分组取第一条记录的案例与实现方法

    前言 今天开发同学向我们提了一个紧急的需求,从集合mt_resources_access_log中,根据字段refererDomain分组,取分组中最近一笔插入的数据,然后将这些符合条件的数据导入到集合mt_resources_access_log_new中. 接到这个需求,还是有些心虚的,原因有二,一是,业务需要,时间紧:二是,实现这个功能MongoDB聚合感觉有些复杂,聚合要走好多步. 数据记录格式如下: 记录1 { "_id" : ObjectId("5c1e23eaa

  • JAVA mongodb 聚合几种查询方式详解

    一.BasicDBObject 整个聚合查询是统计用户的各种状态下的用户数量为场景: 1.筛选条件: date为查询日期: BasicDBObject Query = new BasicDBObject(); Query.put("time",new BasicDBObject("$gte", date + " 00:00:00") .append("$lte", date + " 23:59:59"));

  • Nodejs实现的操作MongoDB数据库功能完整示例

    本文实例讲述了Nodejs实现的操作MongoDB数据库功能.分享给大家供大家参考,具体如下: mongodb_demo.js /** cnpm install mongodb */ var MongoClient = require('mongodb').MongoClient; var DB_CONN_STR = 'mongodb://test:123456@127.0.0.1:27017/test'; // 数据库为 test var insertData = function (db,

  • MongoDB聚合group的操作指南

    MongoDB 聚合 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 基本语法为:db.collection.aggregate( [ <stage1>, <stage2>, ... ] ) 现在在mycol集合中有以下数据: { "_id" : 1, "name" : "tom", "sex" :

  • sql server2016里面的json功能浅析

    测试一下基本的,从查询结果里面构造一个json 的格式 create table t1(ID int identity,name nvarchar(50),Chinese int ,Math int) insert into t1 values ('张三',90,80),('李四',75,90),('王五',68,100) select * from t1 select * from t1 for json auto --查询结果 ID name Chinese Math -----------

  • 适合所有网站的rss和xml聚合功能asp代码

    rss.asp格式的 下面代码保存为rss.asp 复制代码 代码如下: <!--#include file="conn.asp"--> <% strURL = "http://" & request.servervariables("server_name") & _ left(request.servervariables("script_name"),len(request.server

  • MongoDB简介 MongoDB五大特色

    MongoDB是一种强大,灵活,可扩展的数据存储方式.它扩展了关系型数据库的众多有用功能,如辅助索引,范围查询和排序.MongoDB的功能非常丰富,比如:内置的对MapReduce式聚合的支持,以及对地理空间索引的支持. 1.1丰富的数据模型 MongoDB是面向文档的数据库,不是关系型数据库.放弃关系模型的主要原因就是为了获得更加方便的扩展性,还有其他的好处. 基本思路就是将原来"行"(row)的观念转化为更加灵活的"文档"(document)模型.面向文档的方式

随机推荐