在Python中使用dict和set方法的教程

dict

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长。

如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:

>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

为什么dict查找速度这么快?因为dict的实现原理和查字典是一样的。假设字典包含了1万个汉字,我们要查某一个字,一个办法是把字典从第一页往后翻,直到找到我们想要的字为止,这种方法就是在list中查找元素的方法,list越大,查找越慢。

第二种方法是先在字典的索引表里(比如部首表)查这个字对应的页码,然后直接翻到该页,找到这个字,无论找哪个字,这种查找速度都非常快,不会随着字典大小的增加而变慢。

dict就是第二种实现方式,给定一个名字,比如'Michael',dict在内部就可以直接计算出Michael对应的存放成绩的“页码”,也就是95这个数字存放的内存地址,直接取出来,所以速度非常快。

你可以猜到,这种key-value存储方式,在放进去的时候,必须根据key算出value的存放位置,这样,取的时候才能根据key直接拿到value。

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

如果key不存在,dict就会报错:

>>> d['Thomas']
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'Thomas'

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

>>> 'Thomas' in d
False

二是通过dict提供的get方法,如果key不存在,可以返回None,或者自己指定的value:

>>> d.get('Thomas')
>>> d.get('Thomas', -1)
-1

注意:返回None的时候Python的交互式命令行不显示结果。

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

请务必注意,dict内部存放的顺序和key放入的顺序是没有关系的。

和list比较,dict有以下几个特点:

  • 查找和插入的速度极快,不会随着key的增加而增加;
  • 需要占用大量的内存,内存浪费多。

而list相反:

  • 查找和插入的时间随着元素的增加而增加;
  • 占用空间小,浪费内存很少。

所以,dict是用空间来换取时间的一种方法。

dict可以用在需要高速查找的很多地方,在Python代码中几乎无处不在,正确使用dict非常重要,需要牢记的第一条就是dict的key必须是不可变对象。

这是因为dict根据key来计算value的存储位置,如果每次计算相同的key得出的结果不同,那dict内部就完全混乱了。这个通过key计算位置的算法称为哈希算法(Hash)。

要保证hash的正确性,作为key的对象就不能变。在Python中,字符串、整数等都是不可变的,因此,可以放心地作为key。而list是可变的,就不能作为key:

>>> key = [1, 2, 3]
>>> d[key] = 'a list'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
set([1, 2, 3])

注意,传入的参数[1, 2, 3]是一个list,而显示的set([1, 2, 3])只是告诉你这个set内部有1,2,3这3个元素,显示的[]不表示这是一个list。

重复元素在set中自动被过滤:

>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
set([1, 2, 3])

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
set([1, 2, 3, 4])
>>> s.add(4)
>>> s
set([1, 2, 3, 4])

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
set([1, 2, 3])

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
set([2, 3])
>>> s1 | s2
set([1, 2, 3, 4])

set和dict的唯一区别仅在于没有存储对应的value,但是,set的原理和dict一样,所以,同样不可以放入可变对象,因为无法判断两个可变对象是否相等,也就无法保证set内部“不会有重复元素”。试试把list放入set,看看是否会报错。
再议不可变对象

上面我们讲了,str是不变对象,而list是可变对象。

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

而对于不可变对象,比如str,对str进行操作呢:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

虽然字符串有个replace()方法,也确实变出了'Abc',但变量a最后仍是'abc',应该怎么理解呢?

我们先把代码改成下面这样:

>>> a = 'abc'
>>> b = a.replace('a', 'A')
>>> b
'Abc'
>>> a
'abc'

要始终牢记的是,a是变量,而'abc'才是字符串对象!有些时候,我们经常说,对象a的内容是'abc',但其实是指,a本身是一个变量,它指向的对象的内容才是'abc':

当我们调用a.replace('a', 'A')时,实际上调用方法replace是作用在字符串对象'abc'上的,而这个方法虽然名字叫replace,但却没有改变字符串'abc'的内容。相反,replace方法创建了一个新字符串'Abc'并返回,如果我们用变量b指向该新字符串,就容易理解了,变量a仍指向原有的字符串'abc',但变量b却指向新字符串'Abc'了:

所以,对于不变对象来说,调用对象自身的任意方法,也不会改变该对象自身的内容。相反,这些方法会创建新的对象并返回,这样,就保证了不可变对象本身永远是不可变的。
小结

使用key-value存储结构的dict在Python中非常有用,选择不可变对象作为key很重要,最常用的key是字符串。

tuple虽然是不变对象,但试试把(1, 2, 3)和(1, [2, 3])放入dict或set中,并解释结果。

(0)

相关推荐

  • Python set集合类型操作总结

    Python中除了字典,列表,元组还有一个非常好用的数据结构,那就是set了,灵活的运用set可以减去不少的操作(虽然set可以用列表代替) 小例子 1.如果我要在许多列表中找出相同的项,那么用集合是最好不过的了,用集合只用一行就可以解决 复制代码 代码如下: x & y & z # 交集 2.去重 复制代码 代码如下: >>> lst = [1,2,3,4,1] >>> print list(set(lst)) [1, 2, 3, 4] 用法 注意se

  • python的dict,set,list,tuple应用详解

    本文深入剖析了python中dict,set,list,tuple应用及对应示例,有助于读者对其概念及原理的掌握.具体如下: 1.字典(dict) dict 用 {} 包围 dict.keys(),dict.values(),dict.items() hash(obj)返回obj的哈希值,如果返回表示可以作为dict的key del 或 dict.pop可以删除一个item,clear清除所有的内容 sorted(dict)可以把dict排序 dict.get()可以查找没存在的key,dict

  • Python中集合类型(set)学习小结

    set 是一个无序的元素集合,支持并.交.差及对称差等数学运算, 但由于 set 不记录元素位置,因此不支持索引.分片等类序列的操作. 初始化 复制代码 代码如下: s0 = set() d0 = {} s1 = {0} s2 = {i % 2 for i in range(10)} s = set('hi') t = set(['h', 'e', 'l', 'l', 'o']) print(s0, s1, s2, s, t, type(d0)) 运行结果: 复制代码 代码如下: set() {

  • 跟老齐学Python之集合(set)

    回顾一下已经了解的数据类型:int/str/bool/list/dict/tuple 还真的不少了. 不过,python是一个发展的语言,没准以后还出别的呢.看官可能有疑问了,出了这么多的数据类型,我也记不住呀,特别是里面还有不少方法. 不要担心记不住,你只要记住爱因斯坦说的就好了. 爱因斯坦在美国演讲,有人问:"你可记得声音的速度是多少?你如何记下许多东西?" 爱因斯坦轻松答道:"声音的速度是多少,我必须查辞典才能回答.因为我从来不记在辞典上已经印着的东西,我的记忆力是用来

  • python中set常用操作汇总

    sets 支持 x in set, len(set),和 for x in set.作为一个无序的集合,sets不记录元素位置或者插入点.因此,sets不支持 indexing, slicing, 或其它类序列(sequence-like)的操作. 下面我们通过几个例子,来简单说明下 常用操作1 In [2]: a = set() In [3]: a Out[3]: set() In [4]: type(a) Out[4]: set In [5]: b = set([1, 3]) In [6]:

  • 在Python中使用dict和set方法的教程

    dict Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度. 举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list: names = ['Michael', 'Bob', 'Tracy'] scores = [95, 75, 85] 给定一个名字,要查找对应的成绩,就先要在names中找到对应的位置,再从scores取出对应的成绩,list越长,耗时越长. 如

  • Python中optionParser模块的使用方法实例教程

    本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内建的模块用于处理命令行参数: 一个是 getopt,<Deep in python>一书中也有提到,只能简单处理 命令行参数: 另一个是 optparse,它功能强大,而且易于使用,可以方便地生成标准的.符合Unix/Posix 规范的命令行说明. 示例如下: from optparse impo

  • python 中字典嵌套列表的方法

    如下所示: >>> dict={} >>> dict['list']=[] >>> dict['list'].append([1,2,3,4]) >>> dict['list'].append([5,6,7]) >>> dict['list'].append([7,8,9,0,10]) 输出字典: >>> dict {'list': [[1, 2, 3, 4], [5, 6, 7], [7, 8,

  • 在python中利用dict转json按输入顺序输出内容方式

    一般常规的我们保存数据为dict类型时,系统会自动帮我们排序:但有时我们想按照输入顺序的key:value保存到dict中,而不想要改变顺序,则我们可以通过使用collecions,进行排序. collections是一个python的内建模块. 示例如下: # -*- coding:utf-8 -*- #dic = {} dic = dict() dic['b'] = 1 dic['a'] = 2 dic['b0'] = 3 dic['a1'] = 4 print("dic is:"

  • python中把元组转换为namedtuple方法

    我们可以把表里每一个横行的数据,看成是不同的元组.在理解了这个概念后,昨天我们学了不少的namedtuple类,是否也能把元组转换成namedtuple呢?当然这是一个尝试,很多小伙伴平时使用的时候会很少用到,而且资料的搜集方面也比较难找.小编也搜集了很久才有收获,本篇就为大家带来元组在python中转换为namedtuple的方法. 之前我们了解了为什么使用namedtuple,现在该学习如何将常规元组和转换为namedtuple了.假设由于某种原因,有包含彩色RGBA值的实例.如果要将其转换

  • 详解Python中Addict模块的使用方法

    目录 介绍 1.安装 2.用法 3.要牢记的事情 4.属性,如键.item等 5.默认值 6.转化为普通字典 7.计数 8.更新 9.Addict 是怎么来的 介绍 Addit 是一个Python模块,除了提供标准的字典语法外,Addit 生成的字典的值既可以使用属性来获取,也可以使用属性进行设置. 这意味着你不用再写这样的字典了: body = {     'query': {         'filtered': {             'query': {              

  • python中elasticsearch_dsl模块的使用方法

    目录 前言 连接elasticsearch elasticsearch_dsl.Search query方法 filter方法 index方法 elasticsearch_dsl.query elasticsearch_dsl.Q 嵌套类型 查询 排序 分页 聚合 高亮显示 source限制返回字段 删除 案例分析 前言 elasticsearch-dsl是基于elasticsearch-py封装实现的,提供了更简便的操作elasticsearch的方法. 安装: install elastic

  • python中requests使用代理proxies方法介绍

    学习网络爬虫难免遇到使用代理的情况,下面介绍一下如何使用requests设置代理: 如果需要使用代理,你可以通过为任意请求方法提供 proxies 参数来配置单个请求: import requests proxies = { "http": "http://10.10.1.10:3128", "https": "http://10.10.1.10:1080", } requests.get("http://examp

  • python中requests模块的使用方法

    本文实例讲述了python中requests模块的使用方法.分享给大家供大家参考.具体分析如下: 在HTTP相关处理中使用python是不必要的麻烦,这包括urllib2模块以巨大的复杂性代价获取综合性的功能.相比于urllib2,Kenneth Reitz的Requests模块更能简约的支持完整的简单用例. 简单的例子: 想象下我们试图使用get方法从http://example.test/获取资源并且查看返回代码,content-type头信息,还有response的主体内容.这件事无论使用

  • Python中统计函数运行耗时的方法

    本文实例讲述了Python中统计函数运行耗时的方法.分享给大家供大家参考.具体实现方法如下: import time def time_me(fn): def _wrapper(*args, **kwargs): start = time.clock() fn(*args, **kwargs) print "%s cost %s second"%(fn.__name__, time.clock() - start) return _wrapper #这个装饰器可以在方便地统计函数运行的

随机推荐