Python装饰器的函数式编程详解

Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西。虽然好像,他们要干的事都很相似——都是想要对一个已有的模块做一些“修饰工作”,所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去。但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条(Decorator Pattern)里的UML图和那些代码,这就是我在《 从面向对象的设计模式看软件设计》“餐后甜点”一节中说的,OO鼓励了——“厚重地胶合和复杂层次”,也是《 如此理解面向对象编程》中所说的“OO的狂热者们非常害怕处理数据”,Decorator Pattern搞出来的代码简直就是OO的反面教程。

Python 的 Decorator在使用上和Java/C#的Annotation很相似,就是在方法名前面加一个@XXX注解来为这个方法装饰一些东西。但是,Java/C#的Annotation也很让人望而却步,太TMD的复杂了,你要玩它,你需要了解一堆Annotation的类库文档,让人感觉就是在学另外一门语言。

而Python使用了一种相对于Decorator Pattern和Annotation来说非常优雅的方法,这种方法不需要你去掌握什么复杂的OO模型或是Annotation的各种类库规定,完全就是语言层面的玩法:一种函数式编程的技巧。如果你看过本站的《函数式编程》,你一定会为函数式编程的那种“描述你想干什么,而不是描述你要怎么去实现”的编程方式感到畅快。(如果你不了解函数式编程,那在读本文之前,还请你移步去看看《函数式编程》) 好了,我们先来点感性认识,看一个Python修饰器的Hello World的代码。

Hello World

下面是代码:

文件名:hello.py

代码如下:

def hello(fn):
    def wrapper():
        print "hello, %s" % fn.__name__
        fn()
        print "goodby, %s" % fn.__name__
    return wrapper
@hello
def foo():
    print "i am foo"
foo()

当你运行代码,你会看到如下输出:

代码如下:

[chenaho@chenhao-air]$ python hello.py
hello, foo
i am foo
goodby, foo

你可以看到如下的东西:

1)函数foo前面有个@hello的“注解”,hello就是我们前面定义的函数hello

2)在hello函数中,其需要一个fn的参数(这就用来做回调的函数)

3)hello函数中返回了一个inner函数wrapper,这个wrapper函数回调了传进来的fn,并在回调前后加了两条语句。

Decorator 的本质
对于Python的这个@注解语法糖- Syntactic Sugar 来说,当你在用某个@decorator来修饰某个函数func时,如下所示:

代码如下:

@decorator
def func():
    pass

其解释器会解释成下面这样的语句:

代码如下:

func = decorator(func)

尼玛,这不就是把一个函数当参数传到另一个函数中,然后再回调吗?是的,但是,我们需要注意,那里还有一个赋值语句,把decorator这个函数的返回值赋值回了原来的func。 根据《函数式编程》中的first class functions中的定义的,你可以把函数当成变量来使用,所以,decorator必需得返回了一个函数出来给func,这就是所谓的higher order function 高阶函数,不然,后面当func()调用的时候就会出错。 就我们上面那个hello.py里的例子来说,

代码如下:

@hello
def foo():
    print "i am foo"

被解释成了:

代码如下:

foo = hello(foo)

是的,这是一条语句,而且还被执行了。你如果不信的话,你可以写这样的程序来试试看:

代码如下:

def fuck(fn):
    print "fuck %s!" % fn.__name__[::-1].upper()
@fuck
def wfg():
    pass

没了,就上面这段代码,没有调用wfg()的语句,你会发现, fuck函数被调用了,而且还很NB地输出了我们每个人的心声!

再回到我们hello.py的那个例子,我们可以看到,hello(foo)返回了wrapper()函数,所以,foo其实变成了wrapper的一个变量,而后面的foo()执行其实变成了wrapper()。

知道这点本质,当你看到有多个decorator或是带参数的decorator,你也就不会害怕了。

比如:多个decorator

代码如下:

@decorator_one
@decorator_two
def func():
    pass

相当于:

代码如下:

func = decorator_one(decorator_two(func))

比如:带参数的decorator:

代码如下:

@decorator(arg1, arg2)
def func():
    pass

相当于:

代码如下:

func = decorator(arg1,arg2)(func)

这意味着decorator(arg1, arg2)这个函数需要返回一个“真正的decorator”。

带参数及多个Decrorator
我们来看一个有点意义的例子:

html.py

代码如下:

def makeHtmlTag(tag, *args, **kwds):
    def real_decorator(fn):
        css_class = " class='{0}'".format(kwds["css_class"]) \
                                     if "css_class" in kwds else ""
        def wrapped(*args, **kwds):
            return "<"+tag+css_class+">" + fn(*args, **kwds) + "</"+tag+">"
        return wrapped
    return real_decorator
@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
    return "hello world"
print hello()
# 输出:
# <b class='bold_css'><i class='italic_css'>hello world</i></b>

在上面这个例子中,我们可以看到:makeHtmlTag有两个参数。所以,为了让 hello = makeHtmlTag(arg1, arg2)(hello) 成功,makeHtmlTag 必需返回一个decorator(这就是为什么我们在makeHtmlTag中加入了real_decorator()的原因),这样一来,我们就可以进入到 decorator 的逻辑中去了—— decorator得返回一个wrapper,wrapper里回调hello。看似那个makeHtmlTag() 写得层层叠叠,但是,已经了解了本质的我们觉得写得很自然。

你看,Python的Decorator就是这么简单,没有什么复杂的东西,你也不需要了解过多的东西,使用起来就是那么自然、体贴、干爽、透气,独有的速效凹道和完美的吸收轨迹,让你再也不用为每个月的那几天感到焦虑和不安,再加上贴心的护翼设计,量多也不用当心。对不起,我调皮了。

什么,你觉得上面那个带参数的Decorator的函数嵌套太多了,你受不了。好吧,没事,我们看看下面的方法。

class式的 Decorator
首先,先得说一下,decorator的class方式,还是看个示例:

代码如下:

class myDecorator(object):
    def __init__(self, fn):
        print "inside myDecorator.__init__()"
        self.fn = fn
    def __call__(self):
        self.fn()
        print "inside myDecorator.__call__()"
@myDecorator
def aFunction():
    print "inside aFunction()"
print "Finished decorating aFunction()"
aFunction()
# 输出:
# inside myDecorator.__init__()
# Finished decorating aFunction()
# inside aFunction()
# inside myDecorator.__call__()

上面这个示例展示了,用类的方式声明一个decorator。我们可以看到这个类中有两个成员:
1)一个是__init__(),这个方法是在我们给某个函数decorator时被调用,所以,需要有一个fn的参数,也就是被decorator的函数。
2)一个是__call__(),这个方法是在我们调用被decorator函数时被调用的。
上面输出可以看到整个程序的执行顺序。

这看上去要比“函数式”的方式更易读一些。

下面,我们来看看用类的方式来重写上面的html.py的代码:

html.py

代码如下:

class makeHtmlTagClass(object):
    def __init__(self, tag, css_class=""):
        self._tag = tag
        self._css_class = " class='{0}'".format(css_class) \
                                       if css_class !="" else ""
    def __call__(self, fn):
        def wrapped(*args, **kwargs):
            return "<" + self._tag + self._css_class+">"  \
                       + fn(*args, **kwargs) + "</" + self._tag + ">"
        return wrapped
@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
    return "Hello, {}".format(name)
print hello("Hao Chen")

上面这段代码中,我们需要注意这几点:
1)如果decorator有参数的话,__init__() 成员就不能传入fn了,而fn是在__call__的时候传入的。
2)这段代码还展示了 wrapped(*args, **kwargs) 这种方式来传递被decorator函数的参数。(其中:args是一个参数列表,kwargs是参数dict,具体的细节,请参考Python的文档或是StackOverflow的这个问题,这里就不展开了)

用Decorator设置函数的调用参数
你有三种方法可以干这个事:

第一种,通过 **kwargs,这种方法decorator会在kwargs中注入参数。

代码如下:

def decorate_A(function):
    def wrap_function(*args, **kwargs):
        kwargs['str'] = 'Hello!'
        return function(*args, **kwargs)
    return wrap_function
@decorate_A
def print_message_A(*args, **kwargs):
    print(kwargs['str'])
print_message_A()

第二种,约定好参数,直接修改参数

代码如下:

def decorate_B(function):
    def wrap_function(*args, **kwargs):
        str = 'Hello!'
        return function(str, *args, **kwargs)
    return wrap_function
@decorate_B
def print_message_B(str, *args, **kwargs):
    print(str)
print_message_B()

第三种,通过 *args 注入

代码如下:

def decorate_C(function):
    def wrap_function(*args, **kwargs):
        str = 'Hello!'
        #args.insert(1, str)
        args = args +(str,)
        return function(*args, **kwargs)
    return wrap_function
class Printer:
    @decorate_C
    def print_message(self, str, *args, **kwargs):
        print(str)
p = Printer()
p.print_message()

Decorator的副作用
到这里,我相信你应该了解了整个Python的decorator的原理了。

相信你也会发现,被decorator的函数其实已经是另外一个函数了,对于最前面那个hello.py的例子来说,如果你查询一下foo.__name__的话,你会发现其输出的是“wrapper”,而不是我们期望的“foo”,这会给我们的程序埋一些坑。所以,Python的functool包中提供了一个叫wrap的decorator来消除这样的副作用。下面是我们新版本的hello.py。

文件名:hello.py

代码如下:

from functools import wraps
def hello(fn):
    @wraps(fn)
    def wrapper():
        print "hello, %s" % fn.__name__
        fn()
        print "goodby, %s" % fn.__name__
    return wrapper
@hello
def foo():
    '''foo help doc'''
    print "i am foo"
    pass
foo()
print foo.__name__ #输出 foo
print foo.__doc__  #输出 foo help doc

当然,即使是你用了functools的wraps,也不能完全消除这样的副作用。

来看下面这个示例:

代码如下:

from inspect import getmembers, getargspec
from functools import wraps
def wraps_decorator(f):
    @wraps(f)
    def wraps_wrapper(*args, **kwargs):
        return f(*args, **kwargs)
    return wraps_wrapper
class SomeClass(object):
    @wraps_decorator
    def method(self, x, y):
        pass
obj = SomeClass()
for name, func in getmembers(obj, predicate=inspect.ismethod):
    print "Member Name: %s" % name
    print "Func Name: %s" % func.func_name
    print "Args: %s" % getargspec(func)[0]
# 输出:
# Member Name: method
# Func Name: method
# Args: []

你会发现,即使是你你用了functools的wraps,你在用getargspec时,参数也不见了。

要修正这一问,我们还得用Python的反射来解决,下面是相关的代码:

代码如下:

def get_true_argspec(method):
    argspec = inspect.getargspec(method)
    args = argspec[0]
    if args and args[0] == 'self':
        return argspec
    if hasattr(method, '__func__'):
        method = method.__func__
    if not hasattr(method, 'func_closure') or method.func_closure is None:
        raise Exception("No closure for method.")
    method = method.func_closure[0].cell_contents
    return get_true_argspec(method)

当然,我相信大多数人的程序都不会去getargspec。所以,用functools的wraps应该够用了。

一些decorator的示例
好了,现在我们来看一下各种decorator的例子:

给函数调用做缓存
这个例实在是太经典了,整个网上都用这个例子做decorator的经典范例,因为太经典了,所以,我这篇文章也不能免俗。

代码如下:

from functools import wraps
def memo(fn):
    cache = {}
    miss = object()
    @wraps(fn)
    def wrapper(*args):
        result = cache.get(args, miss)
        if result is miss:
            result = fn(*args)
            cache[args] = result
        return result
    return wrapper
@memo
def fib(n):
    if n < 2:
        return n
    return fib(n - 1) + fib(n - 2)

上面这个例子中,是一个斐波拉契数例的递归算法。我们知道,这个递归是相当没有效率的,因为会重复调用。比如:我们要计算fib(5),于是其分解成fib(4) + fib(3),而fib(4)分解成fib(3)+fib(2),fib(3)又分解成fib(2)+fib(1)…… 你可看到,基本上来说,fib(3), fib(2), fib(1)在整个递归过程中被调用了两次。

而我们用decorator,在调用函数前查询一下缓存,如果没有才调用了,有了就从缓存中返回值。一下子,这个递归从二叉树式的递归成了线性的递归。

Profiler的例子
这个例子没什么高深的,就是实用一些。

代码如下:

import cProfile, pstats, StringIO
def profiler(func):
    def wrapper(*args, **kwargs):
        datafn = func.__name__ + ".profile" # Name the data file
        prof = cProfile.Profile()
        retval = prof.runcall(func, *args, **kwargs)
        #prof.dump_stats(datafn)
        s = StringIO.StringIO()
        sortby = 'cumulative'
        ps = pstats.Stats(prof, stream=s).sort_stats(sortby)
        ps.print_stats()
        print s.getvalue()
        return retval
    return wrapper

注册回调函数

下面这个示例展示了通过URL的路由来调用相关注册的函数示例:

代码如下:

class MyApp():
    def __init__(self):
        self.func_map = {}
    def register(self, name):
        def func_wrapper(func):
            self.func_map[name] = func
            return func
        return func_wrapper
    def call_method(self, name=None):
        func = self.func_map.get(name, None)
        if func is None:
            raise Exception("No function registered against - " + str(name))
        return func()
app = MyApp()
@app.register('/')
def main_page_func():
    return "This is the main page."
@app.register('/next_page')
def next_page_func():
    return "This is the next page."
print app.call_method('/')
print app.call_method('/next_page')

注意:
1)上面这个示例中,用类的实例来做decorator。
2)decorator类中没有__call__(),但是wrapper返回了原函数。所以,原函数没有发生任何变化。

给函数打日志

下面这个示例演示了一个logger的decorator,这个decorator输出了函数名,参数,返回值,和运行时间。

代码如下:

from functools import wraps
def logger(fn):
    @wraps(fn)
    def wrapper(*args, **kwargs):
        ts = time.time()
        result = fn(*args, **kwargs)
        te = time.time()
        print "function      = {0}".format(fn.__name__)
        print "    arguments = {0} {1}".format(args, kwargs)
        print "    return    = {0}".format(result)
        print "    time      = %.6f sec" % (te-ts)
        return result
    return wrapper
@logger
def multipy(x, y):
    return x * y
@logger
def sum_num(n):
    s = 0
    for i in xrange(n+1):
        s += i
    return s
print multipy(2, 10)
print sum_num(100)
print sum_num(10000000)

上面那个打日志还是有点粗糙,让我们看一个更好一点的(带log level参数的):

代码如下:

import inspect
def get_line_number():
    return inspect.currentframe().f_back.f_back.f_lineno
def logger(loglevel):
    def log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            ts = time.time()
            result = fn(*args, **kwargs)
            te = time.time()
            print "function   = " + fn.__name__,
            print "    arguments = {0} {1}".format(args, kwargs)
            print "    return    = {0}".format(result)
            print "    time      = %.6f sec" % (te-ts)
            if (loglevel == 'debug'):
                print "    called_from_line : " + str(get_line_number())
            return result
        return wrapper
    return log_decorator

但是,上面这个带log level参数的有两具不好的地方,
1) loglevel不是debug的时候,还是要计算函数调用的时间。
2) 不同level的要写在一起,不易读。

我们再接着改进:

代码如下:

import inspect
def advance_logger(loglevel):
    def get_line_number():
        return inspect.currentframe().f_back.f_back.f_lineno
    def _basic_log(fn, result, *args, **kwargs):
        print "function   = " + fn.__name__,
        print "    arguments = {0} {1}".format(args, kwargs)
        print "    return    = {0}".format(result)
    def info_log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            result = fn(*args, **kwargs)
            _basic_log(fn, result, args, kwargs)
        return wrapper
    def debug_log_decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            ts = time.time()
            result = fn(*args, **kwargs)
            te = time.time()
            _basic_log(fn, result, args, kwargs)
            print "    time      = %.6f sec" % (te-ts)
            print "    called_from_line : " + str(get_line_number())
        return wrapper
    if loglevel is "debug":
        return debug_log_decorator
    else:
        return info_log_decorator

你可以看到两点,
1)我们分了两个log level,一个是info的,一个是debug的,然后我们在外尾根据不同的参数返回不同的decorator。
2)我们把info和debug中的相同的代码抽到了一个叫_basic_log的函数里,DRY原则。

一个MySQL的Decorator
下面这个decorator是我在工作中用到的代码,我简化了一下,把DB连接池的代码去掉了,这样能简单点,方便阅读。

代码如下:

import umysql
from functools import wraps
class Configuraion:
    def __init__(self, env):
        if env == "Prod":
            self.host    = "coolshell.cn"
            self.port    = 3306
            self.db      = "coolshell"
            self.user    = "coolshell"
            self.passwd  = "fuckgfw"
        elif env == "Test":
            self.host   = 'localhost'
            self.port   = 3300
            self.user   = 'coolshell'
            self.db     = 'coolshell'
            self.passwd = 'fuckgfw'
def mysql(sql):
    _conf = Configuraion(env="Prod")
    def on_sql_error(err):
        print err
        sys.exit(-1)
    def handle_sql_result(rs):
        if rs.rows > 0:
            fieldnames = [f[0] for f in rs.fields]
            return [dict(zip(fieldnames, r)) for r in rs.rows]
        else:
            return []
    def decorator(fn):
        @wraps(fn)
        def wrapper(*args, **kwargs):
            mysqlconn = umysql.Connection()
            mysqlconn.settimeout(5)
            mysqlconn.connect(_conf.host, _conf.port, _conf.user, \
                              _conf.passwd, _conf.db, True, 'utf8')
            try:
                rs = mysqlconn.query(sql, {})
            except umysql.Error as e:
                on_sql_error(e)
            data = handle_sql_result(rs)
            kwargs["data"] = data
            result = fn(*args, **kwargs)
            mysqlconn.close()
            return result
        return wrapper
    return decorator
@mysql(sql = "select * from coolshell" )
def get_coolshell(data):
    ... ...
    ... ..

线程异步

下面量个非常简单的异步执行的decorator,注意,异步处理并不简单,下面只是一个示例。

代码如下:

from threading import Thread
from functools import wraps
def async(func):
    @wraps(func)
    def async_func(*args, **kwargs):
        func_hl = Thread(target = func, args = args, kwargs = kwargs)
        func_hl.start()
        return func_hl
    return async_func
if __name__ == '__main__':
    from time import sleep
    @async
    def print_somedata():
        print 'starting print_somedata'
        sleep(2)
        print 'print_somedata: 2 sec passed'
        sleep(2)
        print 'print_somedata: 2 sec passed'
        sleep(2)
        print 'finished print_somedata'
    def main():
        print_somedata()
        print 'back in main'
        print_somedata()
        print 'back in main'
    main()

虽然本文很长,但是都是非常实用,非常基础的知识,希望小伙伴们可以耐心开完。

(0)

相关推荐

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • Python中的多重装饰器

    多重装饰器,即多个装饰器修饰同一个对象[实际上并非完全如此,且看下文详解] 1.装饰器无参数: 复制代码 代码如下: >>> def first(func):     print '%s() was post to first()'%func.func_name     def _first(*args,**kw):         print 'Call the function %s() in _first().'%func.func_name         return func

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

  • Python中的装饰器用法详解

    本文实例讲述了Python中的装饰器用法.分享给大家供大家参考.具体分析如下: 这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: 复制代码 代码如下: @makebold @makeitalic def say():    return "Hello" 打印出如下的输出: <b><i>Hello<i></b> 你会怎么做?最后给出的答案是: 复制代码 代码如下: def makebold(fn):    

  • python装饰器使用方法实例

    什么是python的装饰器? 网络上的定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用. 最能说明装饰器的例子如下: 复制代码 代码如下: #-*- coding: UTF-8 -*-import time def foo():    print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装    d

  • 介绍Python的@property装饰器的用法

    在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻辑.为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数: class Student(object): def get_score(self): return self._score def set_s

  • Python中的各种装饰器详解

    Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义. 一.函数式装饰器:装饰器本身是一个函数. 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装饰对象无参数: 复制代码 代码如下: >>> def test(func):     def _test():         print 'Call the function %s().'%func.func_name         return func()     return _test >

  • 深入浅出学习python装饰器

    之前就了解到了装饰器, 但是就会点皮毛, 而且对其调用方式感到迷茫,正好现在的项目我想优化,就想到了用装饰器, 因此深入研究了下装饰器. 先看下代码: import time # 将函数作为参数传入到此方法.... def timeif(func): def wrapper(arg): print("in wrapper() %s" % (arg)) start = time.clock() func(arg) end = time.clock() print("used:

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

  • 详解Python中的装饰器、闭包和functools的教程

    装饰器(Decorators) 装饰器是这样一种设计模式:如果一个类希望添加其他类的一些功能,而不希望通过继承或是直接修改源代码实现,那么可以使用装饰器模式.简单来说Python中的装饰器就是指某些函数或其他可调用对象,以函数或类作为可选输入参数,然后返回函数或类的形式.通过这个在Python2.6版本中被新加入的特性可以用来实现装饰器设计模式. 顺便提一句,在继续阅读之前,如果你对Python中的闭包(Closure)概念不清楚,请查看本文结尾后的附录,如果没有闭包的相关概念,很难恰当的理解P

随机推荐