浅谈Python程序与C++程序的联合使用

作为Python程序员,应该能够正视Python的优点与缺点。众所周之,Python的运行速度是很慢的,特别是大数据量的运算时,Python会慢得让人难以忍受。对于这种情况,“专业”的解决方案是用上numpy或者opencl。不过有时候为了一点小功能用上这种重型的解决方案很不划算,或者有时候想要实现的操作在numpy里面没有,需要我们自己用C语言来编写。总之,我们使用Python与C++的混合编程能够加快程序热点的运算速度。

首先要提醒大家注意的是,在考虑联合编程之前一定要找到程序运行的热点。简单一点地,使用标准库的profile或者cProfile模块找到最消耗CPU的位置,如果这个位置只简单的消耗IO时间,通常换成C++程序的意义也不会很大,此时做联合编程可能是事倍功半,起不到多大的效果。

还有些情况,Python程序员们想要使用操作系统或者外部模块提供的函数。这些模块一般是为C/C++程序员提供的。这时候也是Python与C++联合编程的用武之地。

Python语言可以说是最好的胶水语言。仅就与C++联合编程这个问题来讲,依使用难度与功能来排列,Python社区提供了以下几种解决方案:

1.使用标准库ctypes直接调用C/C++编写的动态链接库。这是最简单易用的方案。C/C++程序员使用自己的丰富的经验,把预定的功能实现为动态链接库。而Python程序员只要知道这些动态链接库函数的名称、参数类型与返回值类型就能简单地调用它。当你传入参数时,ctypes模块会自动地把Python的对象成为C/C++所对应的参数类型。比如以下调用Windows的API:

  #定义参数类型与函数名称
  from ctypes.wintypes import UINT, DWORD
  GetLastInputInfo = ctypes.windll.user32.GetLastInputInfo
  class LASTINPUTINFO(ctypes.Structure):
    _fields_ = [("cbSize", UINT),
         ("dwTime", DWORD)]

  #开始调用DLL导出的函数
  def getLastInputTime_nt():
    info = LASTINPUTINFO()
    info.cbSize = ctypes.sizeof(info)
    info.dwTime = 0
    if not GetLastInputInfo(ctypes.byref(info)):
      raise WindowsError("")
    return info.dwTime

在这里展示了如何构造Windows的API所需要的结构体,如何填充结构体并分析返回值。

ctypes还能将Python函数提供给C/C++代码作为回调函数。

与其它解决方案相比。ctypes不需要程序员熟悉C/C++语言,不需要安装一个C/C++的编译器,它通过操作系统的接口直接操作C/C++代码。而且ctypes是标准库的一部分,只要安装了Python就可以直接使用。这几个原因使得它深受Python程序员的喜爱。

而它的劣势呢。首先,ctypes不能简单调用C++程序,因为C++在编译的时候使用了name mangling这个技术来实现函数的重载。C++会自动地为类的成员函数加上类名前缀。所以,C++程序员需要以C语言的调用约定来提供接口,没有类,没有重载函数,没有模板,没有C++异常。不能直接调用现有的C++代码可能是这个方案最大的缺点。

另外,对于list, set之类的数据类型,ctypes不能识别并自动地在Python与C/C++数据类型之间转换。C/C++部分不能识别Python数据类型,这时候只能用Python语言来编写转换代码。如果数据量较大,或者调用很频繁,转换代码反而会浪费很多的资源。这或许是ctypes的另一个劣势之一了。

2.如果你使用的是Jython或者IronPython的话,它们也提供了类似于ctypes之类的模块,能够直接访问Java或者.Net语言编写的模块。其优势与劣势大致与ctypes相似。因为其使用范围有限,这里不再详述。

3.使用Cython语言,一种类似于Python语言的一种新型语言编写预定功能的代码,然后将这些代码转换成为C语言编译成为Python语言可以直接调用的二进制模块。Cython语言是融合Python语言与C语言的一种新型语言。它本身能够理解Python语言的语法,然后在其基础上增加了某些C语言的语法,以便更精细地控制数据类型与指针。基本兼容Python语法是这个解决方案最大的特点。很多时候,Python程序员只要在旧的代码中简单地声明一下代码中所使用的参数、变量的类型,就能把立即为旧的Python程序提速。

Cython提供了一个名为pyximporter的工具,能够在安装了C/C++编译器的计算机上面为简单的Cython程序直接生成相应的Python模块。这使得Cython的使用与普通的Python程序一样简单。比如下面这段代码,直接保存为myhello.pyx即可被调用。

  #myhello.pyx
  def sayHelloTenTimes():
    cdef int i #只要简单地为变量标识类型即可加速循环。
    for i in range(0, 10):
      print("hello, world!")

  $ python
  >>> import pyximport; pyximport.install()
  >>> import myhello
  >>> myhello.sayHelloTenTimes()

由此可见,Cython非常容易使用。而且不仅能够处理C语言的模块,还能处理C++的模块——虽然没有直接支持虚函数之类的完整C++特性。因为它不直接使用C/C++语法,而是另外设计比C/C++更简洁优雅的新型语法,因此,对于不熟悉C/C++的程序员来说有很大的吸引力。相比ctypes来说,因为参数类型转换更加智能与高效,所以通常能够提升更多的效率。

劣势呢,所谓用Python程序员所熟练的语法来编写高速的运算代码,乍一听相当地有吸引力。但是如果想要更深入地控制内存与数据结构时,程序员可能会发现,现在他不得不熟练地掌握C/C++语言,然后用Cython的语法写出来。以程序员们懒惰的性格,这反而是件难以忍受的事件。这或许是Cython本身并不大流行的主要原因吧。

4.使用boost.python。有意思的是,与ctypes/Cython形成鲜明的对比,boost.python倾向于让C++程序员拥有更熟悉的编程环境。它让C++程序员使用他所熟悉的C++语法直接控制Python的数据结构,调用Python的解释器。它没有像Cython那样发明新的语法,而是直接使用C++的语法,编写供Python使用的接口。与Cython同样的道理,它的效率优胜于ctypes。

与Cython/SWIG/SIP等方案相比,程序员只需要学习C/C++与Python两种语言。另外,与本文提到的几种解决方案相比,它非常适合在主要由C++编写的程序中控制Python代码。不仅功能更强大、效率还更高。如此神奇的解决方案会有什么劣势呢?某些人可能不同意吧,老鱼一听说它依赖于boost就蔫了,感觉编译与学习庞大又奇怪的boost非常浪费生命。

5.使用SWIG或者SIP,通过编写一个接口文件,使用类似于C/C++语法——声明函数、类型的信息,然后使用特殊的工具为C/C++的代码生成Python的接口代码。这些接口代码能够在Python与C/C++之间的数据结构转换。最终编译这些接口代码,成为Python的二进制模块。SWIG与SIP的接口文件与C/C++的头文件非常相似。

这两种工具差不多,因为。本质上,他们都与Cython类似,都使用了中间语言来生成转换代码。但SWIG/SIP能够在他们的接口文件中嵌入C/C++,能够让程序员仔细地调节数据类型的转换过程。在使用上,它比Cython的层次更低,更接近于Python本身提供的API。

SWIG能够为多种脚本语言生成转换代码。而SIP则专门针对Python与C++。此外,SIP本身是作为PyQt的专门工具来开发的,因此它能够理解Qt的signal/slot。从应用项目上来看,SWIG似乎会更广泛一点。而SIP,目前所见的项目基本都与PyQt相关。据说SWIG对于C++的支持不好,不知道有没有人来说一下呢。相比之下,SIP对于C++的支持非常完善,诸如虚函数、protected member function、模版、析构函数、异常等特性都得到良好的支持。而且SIP支持Python的GIL,还拥有一个使用Python编写的编译系统。可能会更方便一点。

然而这种方案毕竟要学习一种新的语言,所以从表面上来看不如Cython和boost.python讨喜。当程序员想要仔细地调节类型转换代码的时候,需要学习SWIG/SIP的内部机制,被限定使用特殊的变量名。这使得这种方案的学习曲线相对较高。

6.直接使用Python的API,可以称之为最终解决方案。Cython, SWIG, SIP的接口文件转换后所生成的C/C++代码实际上都使用Python的API。与其它方案相比,这种方案相当地繁复,必须为每次函数调用编写数据转换代码,还要操心Python对象的引用计数。我觉得这种方案一无是处,这时就不再多讲了。其它的工具pybindgen不知道什么情况。有兴趣的话可以看看。

好了。题外话一句吧,我一直觉得ctypes与xmlrpc并列Python语言的两大神器,最能体现Python的生产效率。

希望本文在大家选择一种技术路线时能提供一点点帮助。

(0)

相关推荐

  • 深入浅析 C++ 调用 Python 模块

    一般开发过游戏的都知道Lua和C++可以很好的结合在一起,取长补短,把Lua脚本当成类似动态链接库来使用,很好的利用了脚本开发的灵活性.而作为一门流行的通用型脚本语言Python,也是可以做到的.在一个C++应用程序中,我们可以用一组插件来实现一些具有统一接口的功能,一般插件都是使用动态链接库实现,如果插件的变化比较频繁,我们可以使用Python来代替动态链接库形式的插件(堪称文本形式的动态链接库),这样可以方便地根据需求的变化改写脚本代码,而不是必须重新编译链接二进制的动态链接库.灵活性大大的

  • 通过C++学习Python

    我会随便说,C++ 近年来开始"抄袭" Python 么?我只会说,我在用 C++ 来学习 Python. 不信?来跟着我学? 字面量 Python 早在 2.6 版本中就支持将二进制作为字面量了1, 最近 C++14 逐步成熟,刚刚支持这么干2: 复制代码 代码如下: static const int primes = 0b10100000100010100010100010101100; 更不用说 Python 在 1.5 时代就有了 raw string literals 的概念

  • Python和C/C++交互的几种方法总结

    前言 python作为一门脚本语言,其好处是语法简单,很多东西都已经封装好了,直接拿过来用就行,所以实现同样一个功能,用Python写要比用C/C++代码量会少得多.但是优点也必然也伴随着缺点(这是肯定的,不然还要其他语言干嘛),python最被人诟病的一个地方可能就是其运行速度了.这这是大部分脚本语言共同面对的问题,因为没有编译过程,直接逐行执行,所以要慢了一大截.所以在一些对速度要求很高的场合,一般都是使用C/C++这种编译型语言来写.但是很多时候,我们既想使用python的简介优美,又不想

  • C++、python和go语言实现的简单客户端服务器代码示例

    工作中用到了C/S模型,所做的也无非是给服务器发数据,但开发阶段会遇到程序自身的回环测试,需要用到简单的服务端以便验证数据发送的正确性. 写软件用C++,跑测试用python,这段时间也刚好看go语言,所以都要有demo.以下三组程序实现的功能相同,这里一起做下总结. 一.C++实现 Boost.Asio是一个跨平台的C++库,它用现代C++方法为网络和底层I/O程序提供了一致的异步I/O模型. 为了跨平台,我用boost库实现,具体如下. 服务端代码: 复制代码 代码如下: /*      F

  • 将Python代码嵌入C++程序进行编写的实例

    把python嵌入的C++里面需要做一些步骤 安装python程序,这样才能使用python的头文件和库     在我们写的源文件中增加"Python.h"头文件,并且链入"python**.lib"库(还没搞清楚这个库时静态库还是导出库,需要搞清楚)     掌握和了解一些python的C语言api,以便在我们的c++程序中使用 常用的一些C API函数 在了解下面的函数之前有必要了解一下**PyObject***指针,python里面几乎所有的对象都是使用这个指

  • Python调用C++程序的方法详解

    前言 大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧. 原生态导出 Python解释器就是用C实现,因此只要我们的C++的数据结构能让Python认识,理论上就是可以被直接调用的.我们实现test1.cpp如下 #include <Pytho

  • 详解python如何调用C/C++底层库与互相传值

    前言 开发环境: Centos 7 + Python 3.5.1 + Qt Creator(只是使用Qt Creator编译而已,并没有使用QT的任何库) Python调用C/C++库,我现在能做到的有两种方式 1.extern "C" 导出(互相传值比较麻烦,不建议使用这种方式): 将C/C++库做成和平常一样的DLL和或者.so,比如: //.h文件 #include <Python.h> //.cpp文件 //C/C++ my.so 或者my.dll enter &q

  • c++生成dll使用python调用dll的方法

    第一步,建立一个CPP的DLL工程,然后写如下代码,生成DLL 复制代码 代码如下: #include <stdio.h> #define DLLEXPORT extern "C" __declspec(dllexport) DLLEXPORT int __stdcall hello()     {         printf("Hello world!\n");         return 0;     } 第二步,编写一个 python 文件:

  • Python 调用VC++的动态链接库(DLL)

    1. 首先VC++的DLL的导出函数定义成标准C的导出函数: 复制代码 代码如下: #ifdef LRDLLTEST_EXPORTS #define LRDLLTEST_API __declspec(dllexport) #else #define LRDLLTEST_API __declspec(dllimport) #endif extern "C" LRDLLTEST_API int Sum(int a , int b); extern "C" LRDLLTE

  • Python调用C/C++动态链接库的方法详解

    本文以实例讲解了Python调用C/C++ DLL动态链接库的方法,具体示例如下: 示例一: 首先,在创建一个DLL工程(本例创建环境为VS 2005),头文件: //hello.h #ifdef EXPORT_HELLO_DLL #define HELLO_API __declspec(dllexport) #else #define HELLO_API __declspec(dllimport) #endif extern "C" { HELLO_API int IntAdd(in

随机推荐