Python ORM框架SQLAlchemy学习笔记之安装和简单查询实例

最近正好在寻求一种Python的数据库ORM (Object Relational Mapper),SQLAlchemy (项目主页)这个开源项目进入了我的视线,本来想尝试着使用Django的ORM模块的,无奈Django的模块联系比较紧密,没能单独分拆下来,一定程度上说明Django自成体系的生态系统在给我们带来快速便捷的开发环境的同时牺牲了组装的灵活性。

初次学习,也没实质感觉到SQLAlchemy的好处,不过看其介绍的很多大公司均采用该项目,而且其支持的数据库还是蛮丰富的,所以我觉得花点时间研究还是值得的。不过令人遗憾的是关于SQLAlchemy的中文资料比较少,所以对于我们这种英语不佳的带来了一定的麻烦。

研究一个项目最好的办法就是阅读其官方提供的说明文档,当然很轻松就找到了SQLAlchemy的文档 (0.7)。文档的格式和大多数项目一样,有下载安装说明,有示例,有快速上手教程。不过我还是习惯下载个PDF慢慢研究。

下面就将我近期的阅读学习做个笔记,当然这个仅供参考,里面可能有自己的一些猜测和想法,不作权威依据,不当之处还希望指出。

1. 安装SQLAlchemy

安装部分不打算详细介绍,可以通过easy_install或者pip进行安装,命令如下:


代码如下:

easy_install SQLAlchemy
# 或者
pip install SQLAlchemy

当然我使用的是Windows环境,所以倾向于使用setup.py安装,下载压缩包,解压,然后命令提示符下切换到该目录,再运行下面的命令:


代码如下:

python setup.py install

这里需要注意的是默认安装会编译安装C扩展,这些C扩展将直接编译为二进制本机代码然后为SQLAlchemy处理数据集加速,这个是很不错的功能,遗憾的是Windows下提示编译安装扩展失败,当然这不影响SQLAlchemy的使用,只是作为性能上的优化,本机开发环境可以不需要这些扩展,如果不需要可以尝试下面的命令:


代码如下:

pip install --global-option='--without-cextensions' SQLAlchemy
# 或者setup.py方式
python setup.py --without-cextensions install

好了,到这里安装部分我就简单介绍完了,如果对这部分感兴趣的话可以移步文档。

最后可以检验一下安装成果:


代码如下:

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.7.0

2. 简单的查询

就像任何新语言都是从万能的'Hello World'开始一样,先简单体验一把SQLAlchemy,由于SQLAlchemy是管理数据库的,所以我们需要一个数据库,自从用了Python以后,一提到数据库,拿来做实验的首当其冲的就是Python自带的SQLite3,这次我们连SQLite的数据库文件都不需要指定了,直接创建一份基于内存的数据库,也就是说数据文件存放在内存中,便于我们下面的测试。

我们使用create_engine创建数据库连接引擎:


代码如下:

>>> from sqlalchemy import create_engine
>>> engine = create_engine('sqlite:///:memory:', echo=True)

create_engine的第一个参数'sqlite:///:memory:'我们知道是建立数据库连接的,那第二个参数echo=True是做什么的呢,其实如果echo=True那么SQLAlchemy将会通过Python标准模块logging来输出日志,如果你在操作交互式命令控制台,一些信息将会被输出,这里我们可能会看到SQLAlchemy生成的一些SQL语句,这个对于我们学习和调试是很有必要的,所以在这里我们将其设置为True,否则,如果不愿意SQLAlchemy这么啰嗦的话可以设置为False,这样就看不到这些信息啦。

create_engine()将会返回一个Engine引擎实例(instance),其代表着SQLAlchemy对于数据库的核心接口,其隐藏了各种数据库方言(dialect)的细节,实际上SQLAlchemy的底层是Python的DBAPI。

需要注意的是此时并没有实质上与数据库建立连接,什么时候才会与数据库真正建立连接呢?这个只会在你第一次查询数据库的时候发生。呃…这个有点像Lazy Loading (懒惰加载,延迟加载),也就是说我们需要真正操作数据库的时候才真正建立连接。SQLAlchemy很多地方用到了Lazyload,以后会有机会和大家介绍的。

接下来我们来执行第一条SQL语句,同时建立数据库连接:


代码如下:

>>> engine.execute("select 1").scalar()
1

好了,当engine.execute执行时,Engine终于建立起实质上数据库连接了。

Engine对于数据库连接的管理采取的是数据库连接池 (Pool),当连接第一次建立,SQLAlchemy将会将建立的连接放入内部的连接池中以便于随后的数据操作语句执行时复用。

当然关于Engine的用法并不是SQLAlchemy精彩的ORM部分,随后我们会介绍将Engine绑定到ORM,然后使用对象来操作数据库部分。

(0)

相关推荐

  • Python的ORM框架SQLAlchemy入门教程

    SQLAlchemy的理念是,SQL数据库的量级和性能重要于对象集合:而对象集合的抽象又重要于表和行. 一 安装 SQLAlchemy 复制代码 代码如下: pip install sqlalchemy 导入如果没有报错则安装成功 复制代码 代码如下: >>> import sqlalchemy>>> sqlalchemy.__version__'0.9.1'>>> 二 使用 sqlalchemy对数据库操作 1. 定义元信息,绑定到引擎 复制代码 代

  • Python操作SQLite简明教程

    一.SQLite简介 SQLite是一个包含在C库中的轻量级数据库.它并不需要独立的维护进程,并且允许使用非标准变体(nonstandard variant)的SQL查询语句来访问数据库.一些应用可是使用SQLite保存内部数据.它也可以在构建应用原型的时候使用,以便于以后转移到更大型的数据库,比如PostgreSQL或者Oracle. sqlite3模块由Gerhard Häring编写,提供了一个SQL接口,这个接口的设计遵循了由PEP 249描述的DB-API 2.0说明书. 二.创建并打

  • Python中编写ORM框架的入门指引

    有了db模块,操作数据库直接写SQL就很方便.但是,我们还缺少ORM.如果有了ORM,就可以用类似这样的语句获取User对象: user = User.get('123') 而不是写SQL然后再转换成User对象: u = db.select_one('select * from users where id=?', '123') user = User(**u) 所以我们开始编写ORM模块:transwarp.orm. 设计ORM接口 和设计db模块类似,设计ORM也是从上层调用者角度来设计.

  • Python操作SQLite数据库的方法详解【导入,创建,游标,增删改查等】

    本文实例讲述了Python操作SQLite数据库的方法.分享给大家供大家参考,具体如下: SQLite简介 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中.它是D.RichardHipp建立的公有领域项目.它的设计目标是嵌入式的,而且目前已经在很多嵌入式产品中使用了它,它占用资源非常的低,在嵌入式设备中,可能只需要几百K的内存就够了.它能够支持Windows/Linux/Unix等等主流的操作系统,同时能够跟很多程序语言相结合,比如 Tcl.C

  • 研究Python的ORM框架中的SQLAlchemy库的映射关系

    前面介绍了关于用户账户的User表,但是现实生活中随着问题的复杂化数据库存储的数据不可能这么简单,让我们设想有另外一张表,这张表和User有联系,也能够被映射和查询,那么这张表可以存储关联某一账户的任意数量的电子邮件地址.这种联系在数据库理论中是典型的1-N (一对多)关系,用户表某一用户对应N条电子邮件记录. 之前我们的用户表称为users,现在我们再建立一张被称为addresses的表用于存储电子邮件地址,通过Declarative系统,我们可以直接用映射类Address来定义这张表: >>

  • python操作数据库之sqlite3打开数据库、删除、修改示例

    复制代码 代码如下: #coding=utf-8__auther__ = 'xianbao'import sqlite3# 打开数据库def opendata():        conn = sqlite3.connect("mydb.db")        cur = conn.execute("""create table if not exists tianjia(id integer primary key autoincrement, user

  • Python的ORM框架SQLObject入门实例

    SQLObject和SQLAlchemy都是Python语言下的ORM(对象关系映射)解决方案,其中SQLAlchemy被认为是Python下事实上的ORM标准.当然,两者都很优秀. 一.安装 复制代码 代码如下: sudo pip install SQLObject 使用SQLObject操作mysql时候报错ImportError: No module named MySQLdb,那便安装MySQLdb: 复制代码 代码如下: sudo pip install MySQL-python 没想

  • Python操作sqlite3快速、安全插入数据(防注入)的实例

    table通过使用下面语句创建: 复制代码 代码如下: create table userinfo(name text, email text) 更快地插入数据 在此用time.clock()来计时,看看以下三种方法的速度. 复制代码 代码如下: import sqlite3import time def create_tables(dbname):      conn = sqlite3.connect(dbname)    cursor = conn.cursor()    cursor.e

  • Python ORM框架SQLAlchemy学习笔记之关系映射实例

    昨天简单介绍了SQLAlchemy的使用,但是没有能够涉及其最精彩的ORM部分,今天我将简单说明一下,当然主要还是讲解官方文档的内容,由于是学习笔记,有可能存在精简或者自己理解的部分,不做权威依据. 当我们开始使用ORM,一种可配置的结构可以用于描述我们的数据库表,稍后我们定义的类将会被映射到这些表上.当然现代的SQLAlchemy(新版本SQLAlchemy,原文是modern SQLAlchemy)使用Declarative把这两件事一起做了,即允许我们把创建类和描述定义数据库表以及它们之间

  • Python ORM框架SQLAlchemy学习笔记之映射类使用实例和Session会话介绍

    1. 创建映射类的实例(Instance) 前面介绍了如何将数据库实体表映射到Python类上,下面我们可以创建这个类的一个实例(Instance),我们还是以前一篇文章的User类为例,让我们创建User对象: 复制代码 代码如下: >>> ed_user = User('ed', 'Ed Jones', 'edspassword')>>> ed_user.name'ed'>>> ed_user.password'edspassword'>&g

  • Python轻量级ORM框架Peewee访问sqlite数据库的方法详解

    本文实例讲述了Python轻量级ORM框架Peewee访问sqlite数据库的方法.分享给大家供大家参考,具体如下: ORM框架就是 object relation model,对象关系模型,用来实现把数据库中的表 映射到 面向对象编程语言中的类,不需要写sql,通过操作对象就能实现 增删改查. ORM的基本技术有3种: (1)映射技术 数据类型映射:就是把数据库中的数据类型,映射到编程语言中的数据类型.比如,把数据库的int类型映射到Python中的integer 类型. 类映射:把数据库中的

随机推荐