Redis中Bloom filter布隆过滤器的学习

目录
  • 1.概念
  • 2.guava实现
    • 2.1.依赖
    • 2.2.初始化布隆过滤器
    • 2.3.布隆过滤器
    • 2.4.添加元素或者判断是否存在
  • 3.Redisson实现
    • 3.1.依赖
    • 3.2.注入或测试

1.概念

​ 布隆过滤器是一个高空间利用率的概率性数据结构,主要目的是节省内存空间以及判断一个元素是否存在于一个集合中(存在误判的情况),可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判。但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的精确度可以控制的相对足够精确,只会有小小的误判概率(控制参数:error_rate-误判率 initial_size-初始容量)

​ error_rate越小,越精确,需要的空间越大

​ initial_size越大,越精确,当实际数量超出这个数值时,误判率会上升

布隆过滤器可以判断某个数据一定不存在,但是无法判断一定存在

2.guava实现

2.1.依赖

<!--guava实现布隆过滤器-->
<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>19.0</version>
</dependency>

2.2.初始化布隆过滤器

//初始化布隆过滤器,放入到spring容器里面
@Bean
public MyBloomFilter<String> initBloomFilterHelper() {
    return new MyBloomFilter<>((Funnel<String>) (from, into) -> into.putString(from, Charsets.UTF_8).putString(from, Charsets.UTF_8)
                               , 1000000, 0.01);
}

2.3.布隆过滤器

package com.qin.redis.bloomfilter;
import com.google.common.base.Preconditions;
import com.google.common.hash.Funnel;
import com.google.common.hash.Hashing;
/**
 * @version: V1.0.0
 * @className: MyBloomFilter
 */
public class MyBloomFilter<T> {
    private int numHashFunctions;
    private int bitSize;
    private Funnel<T> funnel;
    public MyBloomFilter(Funnel<T> funnel, int expectedInsertions, double fpp) {
        Preconditions.checkArgument(funnel != null, "funnel不能为空");
        this.funnel = funnel;
        // 计算bit数组长度
        bitSize = optimalNumOfBits(expectedInsertions, fpp);
        // 计算hash方法执行次数
        numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, bitSize);
    }
    public int[] murmurHashOffset(T value) {
        int[] offset = new int[numHashFunctions];
        long hash64 = Hashing.murmur3_128().hashObject(value, funnel).asLong();
        int hash1 = (int) hash64;
        int hash2 = (int) (hash64 >>> 32);
        for (int i = 1; i <= numHashFunctions; i++) {
            int nextHash = hash1 + i * hash2;
            if (nextHash < 0) {
                nextHash = ~nextHash;
            }
            offset[i - 1] = nextHash % bitSize;
        }
        return offset;
    }
    /**
     * 计算bit数组长度
     */
    private int optimalNumOfBits(long n, double p) {
        if (p == 0) {
            // 设定最小期望长度
            p = Double.MIN_VALUE;
        }
        int sizeOfBitArray = (int) (-n * Math.log(p) / (Math.log(2) * Math.log(2)));
        return sizeOfBitArray;
    }
    /**
     * 计算hash方法执行次数
     */
    private static int optimalNumOfHashFunctions(long n, long m) {
        int countOfHash = Math.max(1, (int) Math.round((double) m / n * Math.log(2)));
        return countOfHash;
    }
    public static void main(String[] args) {
        System.out.println(optimalNumOfHashFunctions(1000000000L, 123450000L));
    }
}

2.4.添加元素或者判断是否存在

package com.qin.redis.bloomfilter.service;
import com.google.common.base.Preconditions;
import com.hikvison.aksk.redis.bloomfilter.MyBloomFilter;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Service;
/**
 * @version: V1.0.0
 * @className: RedisBloomFilterService
 */
@Service
public class RedisBloomFilterService {
    @Autowired
    private RedisTemplate redisTemplate;
    /**
     * 根据给定的布隆过滤器添加值
     */
    public <T> void addByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            redisTemplate.opsForValue().setBit(key, i, true);
        }
    }
    /**
     * 根据给定的布隆过滤器判断值是否存在
     */
    public <T> boolean includeByBloomFilter(MyBloomFilter<T> bloomFilterHelper, String key, T value) {
        Preconditions.checkArgument(bloomFilterHelper != null, "myBloomFilter不能为空");
        int[] offset = bloomFilterHelper.murmurHashOffset(value);
        for (int i : offset) {
            System.out.println("key : " + key + " " + "value : " + i);
            if (!redisTemplate.opsForValue().getBit(key, i)) {
                return false;
            }
        }
        return true;
    }
}

3.Redisson实现

3.1.依赖

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>2.7.0</version>
</dependency>

3.2.注入或测试

 //单机模式:可以设置集群、哨兵模式
    @Bean
    public Redisson redisson() {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://127.0.0.1:6379");
        RedissonClient redissonClient = Redisson.create(config);
        //初始化过滤器
        RBloomFilter<Object> bloomFilter = redissonClient.getBloomFilter("testBloomFilter");
        bloomFilter.tryInit(1000000L,0.05);
        //插入元素
        bloomFilter.add("zhangsan");
        bloomFilter.add("lisi");
        //判断元素是否存在
        boolean flag = bloomFilter.contains("lisi");
        return (Redisson) redissonClient;
    }

到此这篇关于Redis中Bloom filter布隆过滤器的学习的文章就介绍到这了,更多相关Redis布隆过滤器内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Redis BloomFilter布隆过滤器原理与实现

    目录 Bloom Filter 概念 Bloom Filter 原理 缓存穿透 Bloom Filter的缺点 常见问题 go语言实现 Bloom Filter 概念 布隆过滤器(英语:Bloom Filter)是1970年由一个叫布隆的小伙子提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难. Bloom Filter 原理 布隆过滤器的原理是,当一个元素

  • 布隆过滤器(bloom filter)及php和redis实现布隆过滤器的方法

    引言 在介绍布隆过滤器之前我们首先引入几个场景. 场景一 在一个高并发的计数系统中,如果一个key没有计数,此时我们应该返回0,但是访问的key不存在,相当于每次访问缓存都不起作用了.那么如何避免频繁访问数量为0的key而导致的缓存被击穿? 有人说, 将这个key的值置为0存入缓存不就行了吗?确实,这是一个好的方案.大部分情况我们都是这样做的,当访问一个不存在的key的时候,设置一个带有过期时间的标志,然后放入缓存.不过这样做的缺点也很明显,浪费内存和无法抵御随机key攻击. 场景二 在一个黑名

  • Redis中Bloom filter布隆过滤器的学习

    目录 1.概念 2.guava实现 2.1.依赖 2.2.初始化布隆过滤器 2.3.布隆过滤器 2.4.添加元素或者判断是否存在 3.Redisson实现 3.1.依赖 3.2.注入或测试 1.概念 ​ 布隆过滤器是一个高空间利用率的概率性数据结构,主要目的是节省内存空间以及判断一个元素是否存在于一个集合中(存在误判的情况),可以理解为一个不怎么精确的 set 结构,当你使用它的 contains 方法判断某个对象是否存在时,它可能会误判.但是布隆过滤器也不是特别不精确,只要参数设置的合理,它的

  • Redis中Redisson布隆过滤器的学习

    目录 简介 使用 Demo 依赖 测试代码 简析 初始化 添加元素 检索元素 简介 本文基于Spring Boot 2.6.6.redisson 3.16.0简单分析Redisson布隆过滤器的使用. 布隆过滤器是一个非常长的二进制向量和一系列随机哈希函数的组合,可用于检索一个元素是否存在: 使用场景如下: 解决Redis缓存穿透问题: 邮件过滤: 使用 建立一个二进制向量,所有位设置0: 选择K个散列函数,用于对元素进行K次散列,计算向量的位下标: 添加元素:将K个散列函数作用于该元素,生成K

  • 详解SpringBoot中如何使用布隆过滤器

    目录 前言 一.Guava 实现布隆过滤器 二.Hutool 布隆过滤器 三.Redission 布隆过滤器 四.小结 五.Guava 布隆过滤器结合 Redis 使用 昨天写了一篇Redis布隆过滤器相关的命令的文章,今天来说一说springboot中如何简单在代码中使用布隆过滤器吧. 目前市面上也有好几种实现方式,如果你需要高度定制化,可以完全从零实现,当然这不是一个简单的工程. 如果只是想快速开始的话,那么市面上现成的实现,无疑是最快的. 前言 今天说到的实现方式有以下几种: 引入 Gua

  • 浅析python实现布隆过滤器及Redis中的缓存穿透原理

    目录 布隆过滤器的原理 在 Python 中使用布隆过滤器 1.标准布隆过滤器. 2.计数布隆过滤器. 3.标准扩容布隆过滤器. 4.计数扩容布隆过滤器. Redis 中使用布隆过滤器 最后的话 在开发软件时,我们经常需要判断一个元素是否在一个集合中,比如,如何判断单词的拼写是否错误(判断单词是否在已知的字典中):在网络爬虫里,如何确认一个网址是否已经爬取过:反垃圾邮件系统中,如何判断一个邮件地址是否为垃圾邮件地址等等. 如果这些作为面试题那就很有区分度了,初级工程师就会说,把全部的元素都存在

  • Python+Redis实现布隆过滤器

    布隆过滤器是什么 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 布隆过滤器的基本思想 通过一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit array)中的一个点.这样一来,我们只要看看这个点是不是1就可以知道集合中有没

  • Redis使用元素删除的布隆过滤器来解决缓存穿透问题

    目录 前言 缓存雪崩 解决方案 缓存击穿 解决方案 缓存穿透 解决方案 布隆过滤器(Bloom Filter) 什么是布隆过滤器 位图(Bitmap) 哈希碰撞 布隆过滤器的2大特点 fpp 布隆过滤器的实现(Guava) 布隆过滤器的如何删除 带有计数器的布隆过滤器 总结 前言 在我们日常开发中,Redis使用场景最多的就是作为缓存和分布式锁等功能来使用,而其用作缓存最大的目的就是为了降低数据库访问.但是假如我们某些数据并不存在于Redis当中,那么请求还是会直接到达数据库,而一旦在同一时间大

  • SpringBoot+Redis实现布隆过滤器的示例代码

    目录 简述 Redis安装BloomFilter 基本指令 结合SpingBoot 方式一 方式二 简述 关于布隆过滤器的详细介绍,我在这里就不再赘述一遍了 我们首先知道:BloomFilter使用长度为m bit的字节数组,使用k个hash函数,增加一个元素: 通过k次hash将元素映射到字节数组中k个位置中,并设置对应位置的字节为1.查询元素是否存在: 将元素k次hash得到k个位置,如果对应k个位置的bit是1则认为存在,反之则认为不存在. Guava 中已经有具体的实现,而在我们实际生产

  • SpringBoot+Redis布隆过滤器防恶意流量击穿缓存

    目录 什么是恶意流量穿透 怎么防 布隆过滤器的另一个用武场景 给Redis安装BloomFilter 在Redis里使用BloomFilter 结合SpringBoot使用 搭建springboot工程 使用压测工具喂120万条数据进入RedisBloomfilter看实际效果 本文主要介绍了SpringBoot+Redis布隆过滤器防恶意流量击穿缓存,具体如下: 什么是恶意流量穿透 假设我们的Redis里存有一组用户的注册email,以email作为Key存在,同时它对应着DB里的User表的

  • Redis 布隆过滤器命令的使用详解

    目录 一.Docker 安装 Redis 布隆过滤器 学习历史重要原因之一,就是要学会感恩,因为我们都是站在巨人的肩膀上. 1.1.安装 注意: 1.2.测试 二.RedisBloom 命令讲解 2.1.命令大纲 2.2.BF.ADD 和 BF.MADD 2.3.BF.EXISTS 和 BF.MEXISTS 2.4.BF.INFO 2.5.BF.RESERVE 2.6.BF.INSERT 因为平常使用 Docker 比较多,所以照常还是使用Docker来准备环境啦. 一.Docker 安装 Re

  • Java的布隆过滤器你了解吗

    目录 BitMap 布隆过滤器 运用场景 传统数据结构的不足 实现原理 误判现象 实现 Redis 的 bitmap RedisBloom Guava 的 BloomFilter Redisson 解决缓存穿透 总结 BitMap 现代计算机用二进制(bit,位)作为信息的基础单位,1 个字节等于 8 位,例如big字符串是由 3 个字节组成,但实际在计算机存储时将其用二进制表示,big分别对应的 ASCII 码分别是 98.105.103,对应的二进制分别是 01100010.01101001

随机推荐