Python Pandas 修改表格数据类型 DataFrame 列的顺序案例

目录
  • 一、修改表格数据类型 DataFrame 列的顺序
    • 1.1主要知识点
    • 1.2创建 python 文件
    • 1.3运行结果
  • 二、Pandas 如何统计某个数据列的空值个数
    • 2.1主要知识点
    • 2.2创建 python 文件
    • 2.3运行结果
  • 三、Pandas如何移除包含空值的行
    • 3.1主要知识点
    • 3.2创建 python 文件
    • 3.3运行结果
  • 四、Pandas如何精确设置表格数据的单元格的值
    • 4.1主要知识点
    • 4.2创建 python 文件
    • 4.3运行结果

一、修改表格数据类型 DataFrame 列的顺序

实战场景:Pandas 如何修改表格数据类型 DataFrame 列的顺序

1.1主要知识点

  • 文件读写
  • 基础语法
  • 数据构建
  • Pandas
  • Numpy

实战:

1.2创建 python 文件

import numpy as np
import pandas as pd

np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
print(df)
df = df[["D", "A", "B", "C"]]
print(df)

1.3运行结果

A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641  0.031346  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233  0.216512
9  0.361318  0.031319  0.304045  0.188268
          D         A         B         C
0  0.679109  0.154288  0.133700  0.362685
1  0.557619  0.194450  0.251210  0.758416
2  0.829095  0.514803  0.467800  0.087176
3  0.903489  0.298641  0.031346  0.678006
4  0.634057  0.514451  0.539105  0.664328
5  0.879319  0.353419  0.026643  0.165290
6  0.096294  0.067820  0.369086  0.115501
7  0.771043  0.083770  0.086927  0.022256
8  0.216512  0.049213  0.465223  0.941233
9  0.188268  0.361318  0.031319  0.304045

二、Pandas 如何统计某个数据列的空值个数

实战场景:Pandas 如何统计某个数据列的空值个数

2.1主要知识点

  • 文件读写
  • 基础语法
  • Pandas
  • numpy

实战:

2.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
print(df)
print(df.isnull().sum())

2.3运行结果

A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268
A    0
B    1
C    0
D    1
dtype: int64

三、Pandas如何移除包含空值的行

实战场景:Pandas如何移除包含空值的行

3.1主要知识点

  • 文件读写
  • 基础语法
  • Pandas
  • numpy

实战:

3.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
 
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
print(df)
df2 = df.dropna()
print(df2)

3.3运行结果

A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268
          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
9  0.361318  0.031319  0.304045  0.188268

四、Pandas如何精确设置表格数据的单元格的值

实战场景:Pandas如何精确设置表格数据的单元格的值

4.1主要知识点

  • 文件读写
  • 基础语法
  • Pandas
  • numpy

实战:

4.2创建 python 文件

"""
对如下DF,设置两个单元格的值
·使用iloc 设置(3,B)的值是nan
·使用loc设置(8,D)的值是nan
"""
import numpy as np
import pandas as pd
np.random.seed(66)
df = pd.DataFrame(np.random.rand(10, 4), columns=list('ABCD'))
print(df)
 
df.iloc[3, 1] = np.nan
df.loc[8, 'D'] = np.nan
 
print(df)

4.3运行结果

A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641  0.031346  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233  0.216512
9  0.361318  0.031319  0.304045  0.188268
          A         B         C         D
0  0.154288  0.133700  0.362685  0.679109
1  0.194450  0.251210  0.758416  0.557619
2  0.514803  0.467800  0.087176  0.829095
3  0.298641       NaN  0.678006  0.903489
4  0.514451  0.539105  0.664328  0.634057
5  0.353419  0.026643  0.165290  0.879319
6  0.067820  0.369086  0.115501  0.096294
7  0.083770  0.086927  0.022256  0.771043
8  0.049213  0.465223  0.941233       NaN
9  0.361318  0.031319  0.304045  0.188268

到此这篇关于Python Pandas 修改表格数据类型 DataFrame 列的顺序案例的文章就介绍到这了,更多相关Python Pandas 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据分析Pandas Dataframe排序操作

    目录 1.索引的排序 2.值的排序 前言: 数据的排序是比较常用的操作,DataFrame 的排序分为两种,一种是对索引进行排序,另一种是对值进行排序,接下来就分别介绍一下. 1.索引的排序 DataFrame 提供了sort_index()方法来进行索引的排序,通过axis参数指定对行索引排序还是对列索引排序,默认为0,表示对行索引排序,设置为1表示对列索引进行排序:ascending参数指定升序还是降序,默认为True表示升序,设置为False表示降序, 具体使用方法如下: 对行索引进行降序

  • Python Pandas实现DataFrame合并的图文教程

    目录 一.merge(合并)的语法: 二.以关键列来合并两个dataframe 三.理解merge时数量的对齐关系 1.one-to-one 一对一关系的merge 2.one-to-many 一对多关系的merge 3.many-to-many 多对多关系的merge 四.理解left join.right join.inner join.outer join的区别 1.inner join,默认 2.left join 3. right join 4. outer join 五.如果出现非K

  • python numpy中array与pandas的DataFrame转换方式

    目录 numpy array与pandas的DataFrame转换 1.numpy的array转换为pandas的DataFrame 2.pandas的DataFrame转换为numpy的array Pandas DataFrame转换成Numpy中array的三种方法 1.使用DataFrame中的values方法 2.使用DataFrame中的as_matrix()方法 3.使用Numpy中的array方法 numpy array与pandas的DataFrame转换 1.numpy的arr

  • Python pandas DataFrame基础运算及空值填充详解

    目录 前言 数据对齐 fill_value 空值api dropna fillna 总结 前言 今天我们一起来聊聊DataFrame中的索引. 上一篇文章当中我们介绍了DataFrame数据结构当中一些常用的索引的使用方法,比如iloc.loc以及逻辑索引等等.今天的文章我们来看看DataFrame的一些基本运算. 数据对齐 我们可以计算两个DataFrame的加和,pandas会自动将这两个DataFrame进行数据对齐,如果对不上的数据会被置为Nan(not a number). 首先我们来

  • python Pandas之DataFrame索引及选取数据

    目录 1.索引是什么 1.1 认识索引 1.2 自定义索引 2. 索引的简单使用 2.1 列索引 2.2 行索引 2.2.1 使用[ ] 2.2.2 使用.loc()和.iloc() 1.索引是什么 1.1 认识索引 先创建一个简单的DataFrame. myList = [['a', 10, 1.1], ['b', 20, 2.2], ['c', 30, 3.3], ['d', 40, 4.4]] df1 = pd.DataFrame(data = myList) print(df1) ---

  • Python数据分析之 Pandas Dataframe修改和删除及查询操作

    目录 一.查询操作 元素的查询 二.修改操作 行列索引的修改 元素值的修改 三.行和列的删除操作 一.查询操作 可以使用Dataframe的index属性和columns属性获取行.列索引. import pandas as pd data = {"name": ["Alice", "Bob", "Cindy", "David"], "age": [25, 23, 28, 24], &q

  • Python pandas DataFrame数据拼接方法

    目录 前言 DataFrame数据拼接方法一:使用.append()方法. DataFrame数据拼接方法二:使用.concat()方法. 补充:Python同时合并多个DataFrame 总结 前言 在pandas模块中,通常我们都需要对类型为DataFrame的数据进行操作,其中最为常见的操作便是拼接了.比如我们将两个Excel表格中的数据读入,随后拼接完成后保存进一个新的Excel表格文件中.之前查找了相关的博客, 发现网络上鱼龙混杂.有些代码完全无法执行,为了提高效率,这里做一个详细地记

  • Python数据分析之 Pandas Dataframe条件筛选遍历详情

    目录 一.条件筛选 二.Dataframe数据遍历 for...in...语句 iteritems()方法 iterrows()方法 itertuples()方法 一.条件筛选 查询Pandas Dataframe数据时,经常会筛选出符合条件的数据,接下来介绍一下具体的使用方式. 示例Dataframe如下: 单条件筛选,例如查询gender为woman的数据: df[df["gender"]=="woman"] # 或 df.loc[df["gender

  • Python Pandas 修改表格数据类型 DataFrame 列的顺序案例

    目录 一.修改表格数据类型 DataFrame 列的顺序 1.1主要知识点 1.2创建 python 文件 1.3运行结果 二.Pandas 如何统计某个数据列的空值个数 2.1主要知识点 2.2创建 python 文件 2.3运行结果 三.Pandas如何移除包含空值的行 3.1主要知识点 3.2创建 python 文件 3.3运行结果 四.Pandas如何精确设置表格数据的单元格的值 4.1主要知识点 4.2创建 python 文件 4.3运行结果 一.修改表格数据类型 DataFrame

  • python pandas修改列属性的方法详解

    使用astype如下: df[[column]] = df[[column]].astype(type) type即int.float等类型. 示例: import pandas as pd data = pd.DataFrame([[1, "2"], [2, "2"]]) data.columns = ["one", "two"] print(data) # 当前类型 print("----\n修改前类型:&quo

  • Python pandas按行、按列遍历DataFrame的几种方式

    目录 前言 一.按行遍历 1. 使用loc或iloc方法 2. 使用iterrows()方法 二.按列遍历 1. 使用列索引方式 2. 使用iteritems()方法 补充:遍历dataframe每一行的每一个元素 总结 前言 在对DataFrame数据进行处理时,存在需要对数据内容进行遍历的场景.因此记录一下按照行,列遍历的几种方式. 一.按行遍历 1. 使用loc或iloc方法 loc:表示location,填写内容为行的值或者列表,若填写内容为值,则返回对应行的内容(Series类型):若

  • python pandas 对series和dataframe的重置索引reindex方法

    reindex更多的不是修改pandas对象的索引,而只是修改索引的顺序,如果修改的索引不存在就会使用默认的None代替此行.且不会修改原数组,要修改需要使用赋值语句. series.reindex() import pandas as pd import numpy as np obj = pd.Series(range(4), index=['d', 'b', 'a', 'c']) print obj d 0 b 1 a 2 c 3 dtype: int64 print obj.reinde

  • python pandas获取csv指定行 列的操作方法

    pandas获取csv指定行,列 house_info = pd.read_csv('house_info.csv') 1:取行的操作: house_info.loc[3:6]类似于python的切片操作 2:取列操作: house_info['price']  这是读取csv文件时默认的第一行索引 3:取两列 house_info[['price',tradetypename']] 取多个列也是同理的,注意里面是一个list的列表,不然会报错误: 4:增加列: house_Info['adre

  • js动态修改表格行colspan列跨度的方法

    本文实例讲述了js动态修改表格行colspan列跨度的方法.分享给大家供大家参考.具体如下: <!DOCTYPE html> <html> <head> <script> function setColSpan() { var x=document.getElementById('myTable').rows[0].cells; x[0].colSpan="2"; x[1].colSpan="6"; } </sc

  • python pandas读取csv后,获取列标签的方法

    在Python中,经常会去读csv文件,如下 import pandas as pd import numpy as np df = pd.read_csv("path.csv") data = np.array(df.loc[:,:]) 通过这种方式得到的data,不包含第一行,一般来说,第一行即是列标签.那么如何获取第一行的内容呢.如下 column_headers = list(df.columns.values) 以上这篇python pandas读取csv后,获取列标签的方法

  • python pandas库读取excel/csv中指定行或列数据

    目录 引言 1.根据index查询 2.已知数据在第几行找到想要的数据 3.根据条件查询找到指定行数据 4.找出指定列 5.找出指定的行和指定的列 6.在规定范围内找出符合条件的数据 总结 引言 关键!!!!使用loc函数来查找. 话不多说,直接演示: 有以下名为try.xlsx表: 1.根据index查询 条件:首先导入的数据必须的有index 或者自己添加吧,方法简单,读取excel文件时直接加index_col 代码示例: import pandas as pd #导入pandas库 ex

  • python DataFrame 修改列的顺序实例

    假设我有一个DataFrame(df)如下: name age id mike 10 1 tony 14 2 lee 20 3 现在我想把id 放到最前面,变成: id name age df_id = df.id df = df.drop('id',axis=1) df.insert(0,'id',df_id) 以上这篇python DataFrame 修改列的顺序实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: Python中datet

  • python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

    相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用

随机推荐