Python数据清洗工具之Numpy的基本操作

1. Numpy(Numberical Python)

Anaconda中已经集成了NumPy,可以直接使用。如果想要自行安装的话,可以使用流行的Python
包安装程序 pip 来安装 NumPy,目前使用的是Anaconde的环境进行学习和使用这个库

1.1 这库的安装方法

CMD :pip install numpy
或者使用清华源的镜像库:pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
(直接复制可用)
如果想查看这个库的版本:

import numpy as np
np.__version__

其实很多其他库也可以用这个方法进行查看库的版本

2.Numpy的基础操作

Numpy的操作对象是一个ndarray,所以在使用这个库进行计算的时候需要将数据进行转化

2.1 数组的创建:np.arrary()

np.array 可以把 list,tuple或者其他的序列模式的数据转创建为 ndarray,默认创建一个新的
ndarray

我们会发现原来数据里面有int, float型的数据都被转换成相同的类型了,统一转变成float型的数据了,因为Numpy是要求array里面的数据类型是一致的

2.2 N维数组的创建

Numpy不仅可以生成一维数组,也可以生成多维数组。
比如,可以生成如下的二维数组:





2.3 常用数组




2.4 线性数组的生成


2.5 数组的运算

数组的运算时对应位置的元素进行简单的四则运算

这里需要注意的是,数组x和数组y的元素个数是相同的(两者均是元素个数为3的一维数组)
当两者元素个数相同时,可以对各个元素进行算术运算。如果元素个数不同,则会报错,所以保
持元素个数一致非常重要。
此外,Numpy数组不仅可以进行对应元素的算术运算,还可以和单一的数值(标量)组合起来进
行运算(这个功能也被称为广播,后面会详细介绍),比如:

会把数据转成数组默认的float的数据类型

2.6 数组的形状变换

我们先定义一个数组


如果数组的量级比较大,对于计算的时候只知道其他的一个维度数字,则可以使用下面的-1,作为占位符,会自动帮你补齐另外一个维度的信息


除此之外,还有一种比较常用的数组拉平方法, m.flatten()以及m.ravel(),这两种方法类似

3. 数组的索引

可以将这个二维的数组看成一个矩阵,3行四列, 通过数字的下标索引进行提取数字,这里的切片操作还是左闭右开的


4.广播功能

术语广播是指 NumPy 在算术运算期间处理不同形状的数组的能力。
广播可以简单理解为用于不同大小数组的计算(加、减、乘、除等)的一组规则。
如果数组的形状相同,则对相应元素逐个计算,但是如果数组的维度不相同,就需要用到广播机制

Numpy的广播遵循一组严格的规则:

规则1:如果两个数组的维度数不相同,那么小维度数组的形状将会在最左边补1规则2:如果两个数组的形状在任何一个维度上都不匹配,那么数组的形状会沿着维度为1的维度扩展以匹配另外一个数组的形状规则3:如果两个数组的形状在任何一个维度上都不匹配并且没有任何一个维度为1,则会引 发异常无法广播

到此这篇关于Python数据清洗工具之Numpy的基本操作的文章就介绍到这了,更多相关Python数据清洗内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基础之numpy库的使用

    numpy库概述 numpy库处理的最基础数据类型是由同种元素构成的多维数组,简称为"数组" 数组的特点: 数组中所有元素的类型必须相同 数组中元素可以用整数索引 序号从0开始 ndarray类型的维度叫做轴,轴的个数叫做秩 numpy库的解析 由于numpy库中函数较多而且容易与常用命名混淆,建议采用如下方法引用numpy库 import numpy as np numpy库中常用的创建数组函数 函数 描述 np.array([x,y,z],dtype=int) 从Python列表和

  • python numpy中mat和matrix的区别

    个人理解: np.mat() import numpy as np b=np.mat(a)是将a转化为矩阵 如果a本身是矩阵,就是创建a的一个引用,相当于:np.matrix(a,copy=False) 无论a和b哪一个发生改变都会影响矩阵本身. 如果a不是矩阵,此时b就是a转化成矩阵的结果,是在原有的基础上进行copy(). np.matrix() 单纯的是创建一个矩阵. 补充:python中numpy模块下函数array()和mat()的区别 1. mat()函数与array()函数生成矩阵

  • Python利用numpy实现三层神经网络的示例代码

    本文主要介绍了Python利用numpy实现三层神经网络的示例代码,分享给大家,具体如下: 其实神经网络很好实现,稍微有点基础的基本都可以实现出来.主要都是利用上面这个公式来做的. 这是神经网络的整体框架,一共是三层,分为输入层,隐藏层,输出层.现在我们先来讲解下从输出层到到第一个隐藏层. 使用的编译器是jupyter notebook import numpy as np #定义X,W1,B1 X = np.array([1.0, 0.5]) w1 = np.array([[0.1, 0.3,

  • python numpy中setdiff1d的用法说明

    一.函数解释 setdiff1d(ar1, ar2, assume_unique=False) 1.功能:找到2个数组中集合元素的差异. 2.返回值:在ar1中但不在ar2中的已排序的唯一值. 3.参数: ar1:array_like 输入数组. ar2:array_like 输入比较数组. assume_unique:bool.如果为True,则假定输入数组是唯一的,即可以加快计算速度. 默认值为False. 二.具体示例 1.assume_unique = False的情况: a = np.

  • python 将numpy维度不同的数组相加相乘操作

    第一种 np矩阵可以直接与标量运算 >>>import numpy as np >>>arr1 = np.arange(12).reshape([2,2,3]) >>>arr1 array([[[ 0, 1, 2], [ 3, 4, 5]], [[ 6, 7, 8], [ 9, 10, 11]]]) >>>arr1*5 array([[[ 0, 5, 10], [15, 20, 25]], [[30, 35, 40], [45, 50

  • Python Numpy之linspace用法说明

    linspace生成有序列表,重点在数据范围与数据个数上 linspace(0,1,11),即从0到1闭区间,划分为11个数据点 >>> import numpy as np >>> a = np.linspace(0,1,10) >>> a array([0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444, 0.55555556, 0.66666667, 0.77777778, 0.88888889

  • python3 numpy中数组相乘np.dot(a,b)运算的规则说明

    python np.dot(a,b)运算规则解析 首先我们知道dot运算时不满足交换律的,np.dot(a, b)与np.dot(b, a)是不一样的 另外np.dot(a,b)和a.dot(b)果是一样的 1.numpy中数组相乘np.dot(a,b)运算条件: 对于两数组a和b : 示例一: a = np.array([[3], [3], [3]]) # (3,1) b = np.array([2, 2, 1]) # (3,) print(a, "\na的shape", a.sha

  • Python 用NumPy创建二维数组的案例

    前言 上位机实战开发先放一放,今天来学习一个新的内容-NumPy的使用 1 一维数组 例:用普通方法生成一维数组 num = [0 for i in range(1,5)] # 创建一维数组 print(num) # 打印数组 print("-"*50) # 分割线 num[2]=6 # 将第三个元素修改位6 print(num) # 打印数组 print("-"*50) # 分割线 运行结果 例:用numpy生成一维数组 from numpy import * m

  • python使用NumPy文件的读写操作

    一.使用NumPy读写文本文件 在数据分析中,经常需要从文件中读取数据或将数据写入文件,常用的存储文件的格式有文本文件.CSV格式文件.二进制格式文件和多维数据文件等. 1.将1维或2维数组写入TXT文件或CSV格式文件 在NumPy中,使用savetxt()函数可以将1维或2维数组写入后缀名为txt或csv的文件.函数格式为: **numpy.savetxt(fname,array,fmt='%.18e',delimiter=None,newline='\n', header='', foot

  • python numpy.power()数组元素求n次方案例

    如下所示: numpy.power(x1, x2) 数组的元素分别求n次方.x2可以是数字,也可以是数组,但是x1和x2的列数要相同. >>> x1 = range(6) >>> x1 [0, 1, 2, 3, 4, 5] >>> np.power(x1, 3) array([ 0, 1, 8, 27, 64, 125]) >>> x2 = [1.0, 2.0, 3.0, 3.0, 2.0, 1.0] >>> np.

  • Python基础之Numpy的基本用法详解

    一.数据生成 1.1 手写数组 a = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 一维数组 b = np.array([[1, 2], [3, 4]]) #二维数组 1.2 序列数组 numpy.arange(start, stop, step, dtype),start默认0,step默认1 c = np.arange(0, 10, 1, dtype=int) # =np.arange(10) [0 1 2 3 4 5 6 7 8 9] d

  • Python numpy.power()函数使用说明

    power(x, y) 函数,计算 x 的 y 次方. 示例: x 和 y 为单个数字: import numpy as np print(np.power(2, 3)) 8 分析:2 的 3 次方. x 为列表,y 为单个数字: print(np.power([2,3,4], 3)) [ 8 27 64] 分析:分别求 2, 3, 4 的 3 次方. x 为单个数字,y 为列表: print(np.power(2, [2,3,4])) [ 4 8 16] 分析:分别求 2的 2, 3, 4 次

随机推荐