python与caffe改变通道顺序的方法

把通道放在前面:

image = cv2.imread(path + file)

image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC) aaaa= np.transpose(image,(2, 0, 1)) print(aaaa)

图像原来shape:(48, 48, 3),改之后shape:(3,48,48)

注意:reshape不能解决通道转换问题

pycaffe做识别时通道转换问题:

要注意一点的就是:Caffe中彩色图像的通道是BGR格式,图像存储是【0,255】

1.caffe.io.load_image方式 view plai cop

image = caffe.io.load_image(image_file) #加载图片

使用caffe.io.load_image()读进来的是RGB格式和0~1(float)

所以在进行识别之前要在transformer中设置transformer.set_raw_scale('data',255)(缩放至0~255)

以及transformer.set_channel_swap('data',(2,1,0)(将RGB变换到BGR)

# python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换
transformer.set_raw_scale('data', 255)  # 缩放到[0,255]之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化) 

2.使用cv2.imread()来读取图片

cv2.imread()接口读图像,读进来直接是BGR 格式and 0~255

所以不需要再缩放到【0,255】和通道变换【2,1,0】,不需要transformer.set_raw_scale('data',255)和transformer.set_channel_swap('data',(2,1,0))

3.使用PIL来读取图片

对于彩色图像,不管其图像格式是PNG,还是BMP,或者JPG,在PIL中,使用Image模块的open()函数打开后,返回的图像对象的模式都是“RGB”。而对于灰度图像,不管其图像格式是PNG,还是BMP,或者JPG,打开后,其模式为“L”。所以需要转换格式,但不需要缩放到[0,255]

data = np.array(Image.open(self.dataRoot+img_list))
data = np.transpose(data,(2,0,1))#转换通道
data[[0,2],...] = data[[2,0],...] #RGB→BGR 

4.对于matlab来说

Caffe中的blobs格式是N*C*H*W,分别是数量Number,通道数Channel,以及宽度Height和宽度Width

而matlab中是先宽后高,即[w,h],图像的通道是RGB

所以需要进行相应的转换:

im_data = im (:,:,[3,2,1]) ; %RGB to BGR

im_data = permute(im_data, [2,1,3]); %旋转高度和宽度

最后,分享一个Caffe的典型python识别代码:

# -*- coding: utf-8 -*-
"""
Created on Sun May 28 16:00:47 2017
@author: fancp,#windows下CPU模式
"""
import numpy as np
import caffe
import sys
caffe_root = 'F:/Caffe' #########你自己的Caffe路径
sys.path.insert(0, caffe_root + '/python') 

size = 227 #训练的图片尺寸
image_file = 'F:/.../.../nihao.jpg'#图片路径
model_def = 'F:/.../.../deploy.prototxt'#deploy模型文件位置
model_weights = 'F:/.../.../_iter_20000.caffemodel'#训练完的模型位置
net = caffe.Net(model_def, model_weights, caffe.TEST)  

# 加载均值文件
mu = np.load(caffe_root + '/python/caffe/imagenet/ilsvrc_2012_mean.npy') ###caffe 自带的文件
mu = mu.mean(1).mean(1) # average over pixels to obtain the mean (BGR) pixel values
###########################下面这5句等同与上面两句,选择其一#################
#blob = caffe.proto.caffe_pb2.BlobProto()
#mean_data = open( 'mean.binaryproto' , 'rb' ).read()
#blob.ParseFromString(mean_data)
#mu = np.array(caffe.io.blobproto_to_array(blob))
#mu = mu.mean(1).mean(1).mean(1)
##############################################################################
#图片预处理
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) ##设定图片的shape格式(1,3,227,227),大小由deploy 文件指定
# python读取的图片文件格式为H×W×K,需转化为K×H×W
transformer.set_transpose('data', (2,0,1)) #改变维度的顺序,由原始图片(227,227,3)变为(3,227,227)
transformer.set_mean('data', mu)   # 每个通道减去均值 

# python中将图片存储为[0, 1],而caffe中将图片存储为[0, 255],所以需要一个转换
transformer.set_raw_scale('data', 255)  # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0)) #交换通道,将图片由RGB变为BGR(caffe中图片是BGR格式,而原始格式是RGB,所以要转化)
net.blobs['data'].reshape(1,3,size, size) # 将输入图片格式转化为合适格式(与deploy文件相同)
#上面这句,第一参数:图片数量 第二个参数 :通道数 第三个参数:图片高度 第四个参数:图片宽度 

image = caffe.io.load_image(image_file) #加载图片
# 用上面的transformer.preprocess来处理刚刚加载图片
net.blobs['data'].data[...] = transformer.preprocess('data', image)  

### perform classification
caffe.set_mode_cpu()
output = net.forward()
#print output
output_prob = output['prob'][0].argmax() # 给出概率最高的是第几类,需要自己对应到我们约定的类别去 

以上这篇python与caffe改变通道顺序的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python脚本生成caffe train_list.txt的方法

    首先给出代码: import os path = "/home/data//" path_exp = os.path.expanduser(path) classes = [int(p) for p in os.listdir(path_exp)] classes.sort() # nrof_classes一个数据集下有多少个文件夹,就是说有多少个人,多少个类别 nrof_classes = len(classes) count=0 files = open("train_l

  • python与caffe改变通道顺序的方法

    把通道放在前面: image = cv2.imread(path + file) image = cv2.resize(image, (48, 48), interpolation=cv2.INTER_CUBIC) aaaa= np.transpose(image,(2, 0, 1)) print(aaaa) 图像原来shape:(48, 48, 3),改之后shape:(3,48,48) 注意:reshape不能解决通道转换问题 pycaffe做识别时通道转换问题: 要注意一点的就是:Caff

  • 改变 Python 中线程执行顺序的方法

    一.主线程会等待所有的子线程结束后才结束 首先我看下最普通情况下,主线程和子线程的情况. import threading from time import sleep, ctime def sing(): for i in range(3): print("正在唱歌...%d" % i) sleep(1) def dance(): for i in range(3): print("正在跳舞...%d" % i) sleep(1) if __name__ == '

  • Python使用random.shuffle()打乱列表顺序的方法

    Python的random.shuffle()函数可以用来乱序序列,它是在序列的本身打乱,而不是新生成一个序列. 示例: from random import shuffle x = [[i] for i in range(10)] shuffle(x) shuffle()返回的是None,列表x的顺序被打乱. 以上这篇Python使用random.shuffle()打乱列表顺序的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • python给视频添加背景音乐并改变音量的具体方法

    用到给视频添加背景音乐,并改变音量.记录一下,与碰到同样问题的朋友共享. import subprocess inmp4='E:/PycharmProjects/untitled2/hecheng/191030_232_xs.mp4' inmp3='E:/PycharmProjects/untitled2/hecheng/bg.mp3' inmp32='E:/PycharmProjects/untitled2/hecheng/bg2.mp3' outmp3='E:/PycharmProjects

  • Python数据类型之列表和元组的方法实例详解

    引言 我们前面的文章介绍了数字和字符串,比如我计算今天一天的开销花了多少钱我可以用数字来表示,如果是整形用 int ,如果是小数用 float ,如果你想记录某件东西花了多少钱,应该使用 str 字符串型,如果你想记录表示所有开销的物品名称,你应该用什么表示呢? 可能有人会想到我可以用一个较长的字符串表示,把所有开销物品名称写进去,但是问题来了,如果你发现你记录错误了,想删除掉某件物品的名称,那你是不是要在这个长字符串中去查找到,然后删除,这样虽然可行,那是不是比较麻烦呢. 这种情况下,你是不是

  • Python重新加载模块的实现方法

    importlib 模块的作用 模块,是一个一个单独的py文件 包,里面包含多个模块(py文件) 动态导入模块,这样就不用写那么多的import代码, 典型的例子: 自动同步服务,每个网站都有一个py文件.主进程里收到同步任务,根据名称来动态导入对应的py文件,这样就不用写那么多的import代码.(有点类似java的工厂方法) 但是,importlib并不能解决我在线修改py源码,再不重启进程的情况下,使修改生效. 这种情况,可以使用reload() reload方法 为防止两个模块互相导入的

  • python数据处理 根据颜色对图片进行分类的方法

    前面一篇文章有说过,利用scrapy来爬取图片,是为了对图片数据进行分类而收集数据. 本篇文章就是利用上次爬取的图片数据,根据图片的颜色特征来做一个简单的分类处理. 实现步骤如下: 1:图片路径添加 2:对比度处理 3:滤波处理 4:数据提取以及特征向量化 5:图片分类处理 6:根据处理结果将图片分类保存 代码量中等,还可以更少,只是我为了练习类的使用,而将每个步骤都封装成了一个独立的类,当然里面也有类继承的问题,遇到的问题前面一篇文章有讲解.内容可能有点繁琐,尤其是文件和路径的使用(可以自己修

  • python+opencv+caffe+摄像头做目标检测的实例代码

    首先之前已经成功的使用Python做图像的目标检测,这回因为项目最终是需要用摄像头的, 所以实现摄像头获取图像,并且用Python调用CAFFE接口来实现目标识别 首先是摄像头请选择支持Linux万能驱动兼容V4L2的摄像头, 因为之前用学ARM的时候使用的Smart210,我已经确认我的摄像头是支持的, 我把摄像头插上之後自然就在 /dev 目录下看到多了一个video0的文件, 这个就是摄像头的设备文件了,所以我就没有额外处理驱动的部分 一.检测环境 再来在开始前因为之前按着国嵌的指导手册安

  • 对Python random模块打乱数组顺序的实例讲解

    在我们使用一些数据的过程中,我们想要打乱数组内数据的顺序但不改变数据本身,可以通过改变索引值来实现,也就是将索引值重新随机排列,然后生成新的数组.功能主要由python中random模块的sample()函数实现. sample(population, k) method of random.Random instance Chooses k unique random elements from a population sequence or set. 下面的代码实现的是打乱iris数据,i

  • Python操作SQLite/MySQL/LMDB数据库的方法

    1.概述 1.1前言 最近在存储字模图像集的时候,需要学习LMDB,趁此机会复习了SQLite和MySQL的使用,一起整理在此. 1.2环境 使用win7,Python 3.5.2. 2.SQLite 2.1准备 SQLite是一种嵌入式数据库,它的数据库就是一个文件.Python 2.5x以上版本内置了SQLite3,使用时直接import sqlite3即可. 2.2操作流程 概括地讲,操作SQLite的流程是: ·通过sqlite3.open()创建与数据库文件的连接对象connectio

随机推荐