Python中OpenCV实现查找轮廓的实例

本文将结合实例代码,介绍 OpenCV 如何查找轮廓、获取边界框。

代码: contours.py

OpenCV 提供了 findContours 函数查找轮廓,需要以二值化图像作为输入、并指定些选项调用即可。

我们以下图作为示例:

二值化图像

代码工程 data/ 提供了小狗和红球的二值化掩膜图像:

其使用预训练好的实例分割模型来生成的,脚本可见 detectron2_seg_threshold.py。模型检出结果,如下:

模型用的 Mask R-CNN 已有预测边框。但其他模型会有只出预测掩膜的,此时想要边框就可以使用 OpenCV 来提取。

本文代码也提供了根据色域来获取红球掩膜的办法:

import cv2 as cv
import numpy as np

# 读取图像
img = cv.imread(args.image, cv.IMREAD_COLOR)

# HSV 阈值,获取掩膜
def _threshold_hsv(image, lower, upper):
  hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
  mask = cv.inRange(hsv, lower, upper)
  result = cv.bitwise_and(image, image, mask=mask)
  return result, mask

_, thres = _threshold_hsv(img, np.array([0,110,190]), np.array([7,255,255]))

# 清除小点(可选)
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (1, 1))
thres = cv.morphologyEx(thres, cv.MORPH_OPEN, kernel)

查找轮廓

# 查找轮廓
#  cv.RETR_EXTERNAL: 只查找外部轮廓
contours, hierarchy = cv.findContours(
  threshold, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

# 近似轮廓,减点(可选)
contours_poly = [cv.approxPolyDP(c, 3, True) for c in contours]

# 绘制轮廓
h, w = threshold.shape[:2]
drawing = np.zeros((h, w, 3), dtype=np.uint8)
for i in range(len(contours)):
  cv.drawContours(drawing, contours_poly, i, (0, 255, 0), 1, cv.LINE_8, hierarchy)

获取边界框

boundingRect 获取边界框,并绘制:

for contour in contours_poly:
  rect = cv.boundingRect(contour)
  cv.rectangle(drawing,
                (int(rect[0]), int(rect[1])),
                (int(rect[0]+rect[2]), int(rect[1]+rect[3])),
                (0, 255, 0), 2, cv.LINE_8)

minEnclosingCircle 获取边界圈,并绘制:

for contour in contours_poly:
  center, radius = cv.minEnclosingCircle(contour)
  cv.circle(drawing, (int(center[0]), int(center[1])), int(radius),
            (0, 255, 0), 2, cv.LINE_8)

参考

OpenCV Tutorials / Image Processing

到此这篇关于OpenCV实现查找轮廓的实例的文章就介绍到这了,更多相关OpenCV 查找轮廓内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python 基于opencv 绘制图像轮廓

    图像轮廓概念 轮廓是一系列相连的点组成的曲线,代表了物体的基本外形. 谈起轮廓不免想到边缘,它们确实很像.简单的说,轮廓是连续的,边缘并不全都连续(下图).其实边缘主要是作为图像的特征使用,比如可以用边缘特征可以区分脸和手:而轮廓主要用来分析物体的形态,比如物体的周长和面积等,可以说边缘包括轮廓. 寻找轮廓的操作一般用于二值图像,所以通常会使用阈值分割或Canny边缘检测先得到二值图. 注意:寻找轮廓是针对白色物体的,一定要保证物体是白色,而背景是黑色,不然很多人在寻找轮廓时会找到图片最外面的一

  • Python OpenCV 基于图像边缘提取的轮廓发现函数

    基础知识铺垫 在图像中,轮廓可以简单的理解为连接具有相同颜色的所有连续点(边界)的曲线,轮廓可用于形状分析和对象检测.识别等领域. 轮廓发现的原理:先通过阈值分割提取目标物体,再通过边缘检测提取目标物体轮廓. 一个轮廓就是一系列的点(像素),这些点构成了一个有序的点集合. 使用 cv2.findContours 函数可以用来检测图像的边缘. 函数原型说明 contours, hierarchy = cv2.findContours(image, mode, method[, contours[,

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • OpenCV-Python实现轮廓检测实例分析

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope

  • Python Opencv轮廓常用操作代码实例解析

    1.颜色空间转换 使用cv2.cvtColor(input_image ,flag),flag为转换类型 常用的转换类型有: BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAY BGR和HSV的转换使用 cv2.COLOR_BGR2HSV img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 2.二值化 ret, dst = cv2.threshold(src, thresh, maxval, type) src:表示的是图片源(灰度图)

  • Python OpenCV 图像区域轮廓标记(框选各种小纸条)

    学在前面 上篇 OpenCV 博客原计划完成一个 识别银行卡号的项目,但是写的过程中发现,技术储备不足,我无法在下述图片中,提取出卡号区域,也就无法进行后续的识别了,再次意识到了自己技术还不达标,继续学习.完不成,就实现其它学习项目. 轮廓识别实战 先看一下最终实现的效果,针对一张图片(该图片前景色和背景色差异较大),进行轮廓标记. 图片基本处理 import cv2 as cv src = cv.imread("./demo.jpg") gray = cv.cvtColor(src,

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • python+opencv轮廓检测代码解析

    首先大家可以对OpenCV有个初步的了解,可以参考:简单了解OpenCV 轮廓(Contours),指的是有相同颜色或者密度,连接所有连续点的一条曲线.检测轮廓的工作对形状分析和物体检测与识别都非常有用. 在轮廓检测之前,首先要对图片进行二值化或者Canny边缘检测.在OpenCV中,寻找的物体是白色的,而背景必须是黑色的,因此图片预处理时必须保证这一点. import cv2 #读入图片 img = cv2.imread("1.png") # 必须先转化成灰度图 gray = cv2

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • Python中OpenCV实现查找轮廓的实例

    本文将结合实例代码,介绍 OpenCV 如何查找轮廓.获取边界框. 代码: contours.py OpenCV 提供了 findContours 函数查找轮廓,需要以二值化图像作为输入.并指定些选项调用即可. 我们以下图作为示例: 二值化图像 代码工程 data/ 提供了小狗和红球的二值化掩膜图像: 其使用预训练好的实例分割模型来生成的,脚本可见 detectron2_seg_threshold.py.模型检出结果,如下: 模型用的 Mask R-CNN 已有预测边框.但其他模型会有只出预测掩

  • 基于python使用OpenCV进行物体轮廓排序

    目录 1 引言 2 栗子 2.1 读取图像 2.2 获取轮廓 2.3 轮廓排序 2.4 其他结果 3 总结 1 引言 在进行图像处理过程中,我们经常会遇到一些和物体轮廓相关的操作,比如求目标轮廓的周长面积等,我们直接使用Opencv的findContours函数可以很容易的得到每个目标的轮廓,但是可视化后, 这个次序是无序的,如下图左侧所示: 本节打算实现对物体轮廓进行排序,可以实现从上到下排序或者从左倒右排序,达到上图右侧的可视化结果. 2 栗子 2.1 读取图像 首先,我们来读取图像,并得到

  • Python中openpyxl实现vlookup函数的实例

    相信很多学编程的人都对Vlookup函数不陌生,一些在excel中不方便处理的大量数据,用Python就可以轻松解决.下面介绍openpyxl库中如何实现vlookup函数 : 1.数据源介绍 如图所示,有一个" vlookup.xlsx "文件," A1:F11 "是我们的数据源区域," K1:L5 "是我们的查找源区域.我们的目的就是要在数据源区域的 G 列加一列数据,查找出不同类型下名称表示. 2.Vlookup函数介绍 这个函数我想大家应

  • python中sys模块的介绍与实例

    python版本: Python 2.7.6 1: sys是python自带模块. 利用 import 语句输入sys 模块. 当执行import sys后, python在 sys.path 变量中所列目录中寻找 sys 模块文件.然后运行这个模块的主块中的语句进行初始化,然后就可以使用模块了 . 2: sys模块常见函数 可以通过dir()方法查看模块中可用的方法. 结果如下, 很多我都没有用过, 所以只是简单介绍几个自己用过的方法. $ python Python 2.7.6 (defau

  • python中opencv实现文字分割的实践

    图片文字分割的时候,常用的方法有两种.一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像:还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像. 投影法 对文字图片作横向和纵向投影,即通过统计出每一行像素个数,和每一列像素个数,来分割文字. 分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 算法步骤: 使用水平投影和垂直投

  • python计算机视觉opencv图像金字塔轮廓及模板匹配

    目录 1.图像金字塔 ①高斯金字塔 ②拉普拉斯金字塔 2.图像轮廓 ①寻找轮廓 ②轮廓特征 ③轮廓绘制 3.模板匹配 ①模板匹配 ②匹配框线绘制 ③多对象匹配 4.直方图统计 ①直方图绘制 ②直方图统计 ③直方图的mask操作 ④直方图均衡化 5.傅里叶变换 1.图像金字塔 ①高斯金字塔 向下采样,数据会越来越少,减少的方式是:将偶数行和列删除 向上采样,数据会越来越多,将图像在每个方向上扩大为原来的两倍,新增的行和列用0来填充.使用先前同样的内核与放大后的图像卷积,获得近似值. 上采样之后,图

  • 在python中使用正则表达式查找可嵌套字符串组

    在网上看到一个小需求,需要用正则表达式来处理.原需求如下: 找出文本中包含"因为--所以"的句子,并以两个词为中心对齐输出前后3个字,中间全输出,如果"因为"和"所以"中间还存在"因为""所以",也要找出来,另算一行,输出格式为: 行号 前面3个字 *因为* 全部 &所以& 后面3个字(标点符号算一个字) 2 还不是 *因为* 这里好, &所以& 没有人 实现方法如下: #e

  • Python中Selenium模拟JQuery滑动解锁实例

    本文介绍了Python中Selenium模拟JQuery滑动解锁实例,分享给大家,也给自己留个笔记 滑动解锁一直做UI自动化的难点之一,我补一篇滑动解锁的例子,希望能给初做Web UI自动化测试的同学一些思路. 首先先看个例子. 当我手动点击滑块时,改变的只是样式: 1.slide-to-unlock-handle 表示滑块,滑块的左边距在变大(因为它在向右移动嘛!) 2.Slide-tounlock-progress 表示滑过之后的背景黄色,黄色的宽度在增加,因为滑动经过的地方都变黄了. 除些

  • python中 chr unichr ord函数的实例详解

    python中 chr unichr ord函数的实例详解 chr()函数用一个范围在range(256)内的(就是0-255)整数作参数,返回一个对应的字符.unichr()跟它一样,只不过返回的是Unicode字符,这个从Python 2.0才加入的unichr()的参数范围依赖于你的python是如何被编译的.如果是配置为USC2的Unicode,那么它的允许范围就是range(65536)或0x0000-0xFFFF:如果配置为UCS4,那么这个值应该是range(1114112)或0x

随机推荐