Python 数据可视化超详细讲解折线图的实现

绘制简单的折线图

在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可

使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作

import matplotlib.pyplot as plt  # 导入pyplot模块并设置别名为plt

squares = [1, 4, 9, 16, 25]
plt.plot(squares)
plt.show()  # 打开matplotib查看器,并显示绘制的图形

运行结果如下:

修改标签文字和线条粗细

上图所示的图形表示的数字越来越大,但标签文字太小,线条太细,不方便观察,这时就需要调整一下增加图形的可读性

import matplotlib.pyplot as plt  # 导入pyplot模块并设置别名为plt

squares = [1, 4, 9, 16, 25]
plt.plot(squares, linewidth=5)  # 函数linewidth设置绘制线条的粗细
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

校正图形

图形更容易阅读了,但我们发现没有正确的绘制数据,折线图的终点指出4的平方为25!

向plot()提供一系列数字时,它假设第一个数据点对应的x坐标值为0,但我们的第一个点对应的x值为1。为改变这种默认行为,我们可以给plot同时提供输入值和输出值。

import matplotlib.pyplot as plt  # 导入pyplot模块并设置别名为plt

input_value = [1, 2, 3, 4, 5]
squares = [1, 4, 9, 16, 25]
plt.plot(input_value, squares, linewidth=5)  # 函数linewidth设置绘制线条的粗细
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', labelsize=14)
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

现在plot()成功绘制数据,因为我们同时提供了输入值和输出值。使用plot()时可指定各种实参,还可使用众多函数对图像进行定制

使用scatter()绘制散点图并设置其格式

有时候需要绘制散点图并设置各个数据的格式。例如:你可能想以一种颜色显示较小的值,用一种颜色显示较大的值。绘制大型数据集时,你还可以对每个点都设置同样的格式,再使用不同的样式选项重新绘制某个点,以突出它们 要绘制单个点,可使用函数scatter(),并向它传递一对x,y坐标,它将在指定绘制绘制一个点

import matplotlib.pyplot as plt

plt.scatter(2, 4)  # 向scatter函数传递一对x,y坐标
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

下面来设置输出的样式,使其更有趣:添加标题,给坐标轴加上标签,并设置文本格式

import matplotlib.pyplot as plt

plt.scatter(2, 4, s=200)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

使用scatter()绘制一系列点

import matplotlib.pyplot as plt

x_values = [1, 2, 3, 4, 5]
y_values = [1, 4, 9, 16, 25]
plt.scatter(x_values, y_values, s=100)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

自动计算数据

手动计算列表包含的值很麻烦,可以利用python中的循环来解决,下面是绘制1000个点的范例:

import matplotlib.pyplot as plt

x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, s=10)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show()  # 打开matplotib查看器,并显示绘制的图形

这里需要注意函数axis需要传入四个值,x,y坐标的最小值,最大值 效果如下:

删除数据点的轮廓

要删除数据点的轮廓,可在调用scatter()时传递实参edgecolor=‘none’

plt.scatter(x_values, y_values, edgecolors='none', s=10)
import matplotlib.pyplot as plt

x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, edgecolors='none', s=10)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

自定义颜色

要修改数据点的颜色,可向scatter()传递参数c,并将其设置要使用的颜色的名称

plt.scatter(x_values, y_values, c='red',edgecolors='none', s=10)
import matplotlib.pyplot as plt

x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
plt.scatter(x_values, y_values, c='red',edgecolors='none', s=10)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show()  # 打开matplotib查看器,并显示绘制的图形

效果如下:

使用颜色映射

颜色映射(colormap)是一系列颜色,它们从颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色显示较小的值,并使用较深的颜色显示较大的值

import matplotlib.pyplot as plt

x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
# 将c设置为y值列表,使用参数cmap告诉pyplot使用哪个颜色映射
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolors='none', s=10)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.show()  # 打开matplotib查看器,并显示绘制的图形

自动保存图表

要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.sacefig()的调用

plt.savefig('squares.png',bbox_inches='tight')

第一个实参指定要以什么样的文件名保存图表,第二个实参指定将图表多余的空白区域裁剪(如果要保留,可省略这个实参)

import matplotlib.pyplot as plt

x_values = list(range(1, 1001))
y_values = [x ** 2 for x in x_values]
# 将c设置为y值列表,使用参数cmap告诉pyplot使用哪个颜色映射
plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues, edgecolors='none', s=10)  # 向scatter函数传递一对x,y坐标
# 设置图表标题,并给坐标轴加上标签
plt.title('Square number', fontsize=24)
plt.xlabel('Value', fontsize=14)
plt.ylabel('Square of Value', fontsize=14)
# 设置刻度标记的大小
plt.tick_params(axis='both', which='major', labelsize=14)
# 设置每个坐标轴的取值范围
plt.axis([0, 1100, 0, 1100000])
plt.savefig('squares.png',bbox_inches='tight')
plt.show()  # 打开matplotib查看器,并显示绘制的图形

保存效果如下:

注意事项: 一定要把保存图表的代码放在plt.show前面,要是放在后面show会重新创建新的图片

以上就是绘制简单折线图的教程,如果有改进的建议欢迎在评论区留言奥

人生苦短,我用python

到此这篇关于Python 数据可视化超详细讲解折线图的实现的文章就介绍到这了,更多相关Python 折线图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python数据可视化Seaborn画热力图

    目录 1.引言 2. 栗子 3. 数据预处理 4. 画热力图 5. 添加数值 6. 调色板优化 1.引言 热力图的想法很简单,用颜色替换数字. 现在,这种可视化风格已经从最初的颜色编码表格走了很长一段路.热力图被广泛用于地理空间数据.这种图通常用于描述变量的密度或强度,模式可视化.方差甚至异常可视化等. 鉴于热力图有如此多的应用,本文将介绍如何使用Seaborn 来创建热力图. 2. 栗子 首先我们导入Pandas和Numpy库,这两个库可以帮助我们进行数据预处理. import pandas

  • python数据可视化Seaborn绘制山脊图

    目录 1. 引言 2. 举个栗子 3.山脊图 4.扩展 5.结论 1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相对不常见且非常适合吸引大家注意力的紧凑图的形式表现.观察上图,我们给其起名叫Ridge plot是非常恰当的,因为上述图表看起来确实很像山的脊背.此外,上述图像还有另一个称呼叫做Joy Plots–这主要是因为Joy Division乐队在如下专辑封面上采用了这种可视化形式. 2. 举个栗子 在介绍完山脊图

  • Python数据可视化之环形图

    目录 1.引言 2.方式一:饼图形式 3.方式二:条形图形式 1.引言 环形图(圆环)在功能上与饼图相同,整个环被分成不同的部分,用各个圆弧来表示每个数据所占的比例值.但其中心的空白可用于显示其他相关数据展示,相比于标准饼图提供了更丰富的数据信息输出. 在本文中,我们将介绍 Matplolib中绘制圆环图的两种方法.使用饼图和参数wedgeprops 的简单方法,以及使用极轴和水平条形图的复杂方法. 2.方式一:饼图形式 在 Matplotlib 中没有绘制圆环图的直接方法,但我们可以使用饼图中

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python 数据可视化实现5种炫酷的动态图

    本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互. 那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具. 启动 如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装: pip install plotly 安装完成后,就开始使用吧! 动画 在研究这个或那个指标的演变

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

  • Python数据可视化Pyecharts库实现桑葚图效果

    目录 基本思路我总结大概有三步: 1. 先申明使用sankey 2. 使用add 添加对sankey图的配置信息 3. 最后render生成html文件展示 首先介绍一下什么是桑葚图? 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图. 它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源.材料成分.金融等数据的可视化分析. 因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"

  • Python数据可视化之使用matplotlib绘制简单图表

    目录 一.绘制折线图 二.绘制柱形图或堆积图形 三.绘制条形图或堆积条形图 四.绘制堆积面积图 五.绘制直方图 六.绘制饼图或者圆环图 七.绘制散点图或气泡图 八.绘制箱形图 九.绘制雷达图 十.绘制误差棒图 总结 一.绘制折线图 使用plot()绘制折线图 常用的参数: x:表示x轴的数据 y:表示y轴的数据 fmt:表示快速设置条样式的格式字符串. label:表示应用于图例的标签文本. plot()会返回一个包含Line2D类对象(代表线条)的列表. plot()函数的语法格式: plot

  • python数据可视化Pyecharts库sankey修改桑葚图颜色

    目录 在上一篇关于绘画Sankey桑葚图的文章里,已经介绍过大致的过程,本文主要解决如何自定义/修改 所想要的颜色, 如下所示一个桑葚图: 想要修改Phenotype1, 使用itemStyle中的属性color,给每个结点添加一个字典属性,设置所需要的颜色即可. nodes = [{'name':'Phenotype 1','itemStyle':{'color':"#FA8072"}}, {'name':'Phenotype 2','itemStyle':{'color':&quo

  • Python 数据可视化超详细讲解折线图的实现

    绘制简单的折线图 在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可 使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作 import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show() # 打开matplotib

  • Python海象运算符超详细讲解

    目录 介绍 语法 用法 if 语句 while 循环 while 循环逐行读取文件 while 循环验证输入 推导式 三元表达式 总结 介绍 海象运算符,即 := ,在 PEP 572 中被提出,并在 Python3.8 版本中发布. 海象运算符的英文原名叫Assignment Expresions,即赋值表达式. 它由一个冒号:和一个等号=组成,即:=.而它被称作walrus operator(海象运算符),是因为它长得像一只海象. 语法 海象运算符的语法格式如下: variable_name

  • python数据写入列表并导出折线图

    import csv datas = [['商品名称','周一销售','周二销售','周三销售','周四销售','周五销售','周六销售','周日销售'],          ['洗衣机', '2', '1', '2', '3','2','4','5'],          ['冰箱', '1', '2', '3', '2', '4', '5', '4'],          ['空调', '3', '4', '3', '4', '3', '6', '5']] # '商品名称','周一销售','

  • Java SpringMVC数据响应超详细讲解

    目录 1)页面跳转   2)回写数据 3)配置注解驱动 4)知识要点 1)页面跳转   直接返回字符串:此种方式会将返回的字符串与视图解析器的前后缀拼接后跳转.  返回带有前缀的字符串: 转发: forward:/WEB-INF/views/index.jsp 重定向: redirect:/index.jsp 通过ModelAndView对象返回 @RequestMapping("/quick2") public ModelAndView quickMethod2(){ ModelAn

  • python数据可视化matplotlib绘制折线图示例

    目录 plt.plot()函数各参数解析 各参数具体含义为: x,y color linestyle linewidth marker 关于marker的参数 plt.plot()函数各参数解析 plt.plot()函数的作用是绘制折线图,它的参数有很多,常用的函数参数如下: plt.plot(x,y,color,linestyle,linewidth,marker,markersize,markerfacecolor,markeredgewidth,markeredgecolor) 各参数具体

  • python数据可视化之matplotlib.pyplot基础以及折线图

    不论是数据挖掘还是数据建模,都免不了数据可视化的问题.对于Python来说,Matplotlib是最著名的绘图库,它主要用于二维绘图,当然它也可以进行简单的三维绘图(基于spyder). - 模块引用 import matplotlib.pyplot as plt #引用画图库中的pyplot模块 -折线条图 语法 import matplotlib.pyplot as plt data=[1,2,3,4,5,4,2,4,6,7] #随便创建了一个数据 plt.plot(data) #引用画图库

  • Python数据可视化:饼状图的实例讲解

    使用python实现论文里面的饼状图: 原图: python代码实现: # # 饼状图 # plot.figure(figsize=(8,8)) labels = [u'Canteen', u'Supermarket', u'Dorm', u'Others'] sizes = [73, 21, 4, 2] colors = ['red', 'yellow', 'blue', 'green'] explode = (0.05, 0, 0, 0) patches, l_text, p_text =

  • python数据可视化之日期折线图画法

    本文实例为大家分享了python日期折线图画法的具体代码,供大家参考,具体内容如下 引入 什么是折线图: 折线图是排列在工作表的列或行中的数据可以绘制到折线图中.折线图可以显示随时间(根据常用比例设置)而变化的连续数据,因此非常适用于显示在相等时间间隔下数据的趋势.在折线图中,类别数据沿水平轴均匀分布,所有值数据沿垂直轴均匀分布. 以上引用自 百度百科 ,简单来说一般折线图 是以时间作为 X 轴 数据 作为 Y轴,这当然不是固定的,是可以自行设置的. 话不多说~ 进入正题 第一种画法: impo

  • Python数据可视化之简单折线图的绘制

    目录 创建RandomWalk类 选择方向 绘制随机漫步图 模拟多次随机漫步 给点着色 突出起点和终点 增加点数 调整尺寸以适用屏幕 创建RandomWalk类 为模拟随机漫步,我们将创建一个RandomWalk类,随机选择前进方向,这个类有三个属性,一个存储随机漫步的次数,另外两个存储随机漫步的每个点的x,y坐标,每次漫步都从点(0,0)出发 from random import choice class RandomWalk(): '''一个生成随机漫步数据的类''' def __init_

随机推荐