Python Pandas高级教程之时间处理

目录
  • 简介
  • 时间分类
  • Timestamp
    • DatetimeIndex
    • date_range 和 bdate_range
    • origin
    • 格式化
  • Period
  • DateOffset
  • 作为index
    • 切片和完全匹配
  • 时间序列的操作
    • Shifting
    • 频率转换
  • Resampling 重新取样
  • 总结

简介

时间应该是在数据处理中经常会用到的一种数据类型,除了Numpy中datetime64 和 timedelta64 这两种数据类型之外,pandas 还整合了其他python库比如  scikits.timeseries  中的功能。

时间分类

pandas中有四种时间类型:

  1. Date times :  日期和时间,可以带时区。和标准库中的  datetime.datetime 类似。
  2. Time deltas: 绝对持续时间,和 标准库中的  datetime.timedelta  类似。
  3. Time spans: 由时间点及其关联的频率定义的时间跨度。
  4. Date offsets:基于日历计算的时间 和 dateutil.relativedelta.relativedelta 类似。

我们用一张表来表示:

类型 标量class 数组class pandas数据类型 主要创建方法
Date times Timestamp DatetimeIndex datetime64[ns] or datetime64[ns, tz] to_datetime or date_range
Time deltas Timedelta TimedeltaIndex timedelta64[ns] to_timedelta or timedelta_range
Time spans Period PeriodIndex period[freq] Period or period_range
Date offsets DateOffset None None DateOffset

看一个使用的例子:

In [19]: pd.Series(range(3), index=pd.date_range("2000", freq="D", periods=3))
Out[19]:
2000-01-01    0
2000-01-02    1
2000-01-03    2
Freq: D, dtype: int64

看一下上面数据类型的空值:

In [24]: pd.Timestamp(pd.NaT)
Out[24]: NaT

In [25]: pd.Timedelta(pd.NaT)
Out[25]: NaT

In [26]: pd.Period(pd.NaT)
Out[26]: NaT

# Equality acts as np.nan would
In [27]: pd.NaT == pd.NaT
Out[27]: False

Timestamp

Timestamp  是最基础的时间类型,我们可以这样创建:

In [28]: pd.Timestamp(datetime.datetime(2012, 5, 1))
Out[28]: Timestamp('2012-05-01 00:00:00')

In [29]: pd.Timestamp("2012-05-01")
Out[29]: Timestamp('2012-05-01 00:00:00')

In [30]: pd.Timestamp(2012, 5, 1)
Out[30]: Timestamp('2012-05-01 00:00:00')

DatetimeIndex

Timestamp 作为index会自动被转换为DatetimeIndex:

In [33]: dates = [
   ....:     pd.Timestamp("2012-05-01"),
   ....:     pd.Timestamp("2012-05-02"),
   ....:     pd.Timestamp("2012-05-03"),
   ....: ]
   ....: 

In [34]: ts = pd.Series(np.random.randn(3), dates)

In [35]: type(ts.index)
Out[35]: pandas.core.indexes.datetimes.DatetimeIndex

In [36]: ts.index
Out[36]: DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)

In [37]: ts
Out[37]:
2012-05-01    0.469112
2012-05-02   -0.282863
2012-05-03   -1.509059
dtype: float64

date_range 和 bdate_range

还可以使用 date_range 来创建DatetimeIndex:

In [74]: start = datetime.datetime(2011, 1, 1)

In [75]: end = datetime.datetime(2012, 1, 1)

In [76]: index = pd.date_range(start, end)

In [77]: index
Out[77]:
DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',
               '2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',
               '2011-01-09', '2011-01-10',
               ...
               '2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',
               '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',
               '2011-12-31', '2012-01-01'],
              dtype='datetime64[ns]', length=366, freq='D')

date_range 是日历范围,bdate_range 是工作日范围:

In [78]: index = pd.bdate_range(start, end)

In [79]: index
Out[79]:
DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',
               '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',
               '2011-01-13', '2011-01-14',
               ...
               '2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',
               '2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',
               '2011-12-29', '2011-12-30'],
              dtype='datetime64[ns]', length=260, freq='B')

两个方法都可以带上 start, end, 和 periods 参数。

In [84]: pd.bdate_range(end=end, periods=20)
In [83]: pd.date_range(start, end, freq="W")
In [86]: pd.date_range("2018-01-01", "2018-01-05", periods=5)

origin

使用 origin参数,可以修改 DatetimeIndex 的起点:

In [67]: pd.to_datetime([1, 2, 3], unit="D", origin=pd.Timestamp("1960-01-01"))
Out[67]: DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)

默认情况下   origin='unix',  也就是起点是 1970-01-01 00:00:00.

In [68]: pd.to_datetime([1, 2, 3], unit="D")
Out[68]: DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)

格式化

使用format参数可以对时间进行格式化:

In [51]: pd.to_datetime("2010/11/12", format="%Y/%m/%d")
Out[51]: Timestamp('2010-11-12 00:00:00')

In [52]: pd.to_datetime("12-11-2010 00:00", format="%d-%m-%Y %H:%M")
Out[52]: Timestamp('2010-11-12 00:00:00')

Period

Period 表示的是一个时间跨度,通常和freq一起使用:

In [31]: pd.Period("2011-01")
Out[31]: Period('2011-01', 'M')

In [32]: pd.Period("2012-05", freq="D")
Out[32]: Period('2012-05-01', 'D')

Period可以直接进行运算:

In [345]: p = pd.Period("2012", freq="A-DEC")

In [346]: p + 1
Out[346]: Period('2013', 'A-DEC')

In [347]: p - 3
Out[347]: Period('2009', 'A-DEC')

In [348]: p = pd.Period("2012-01", freq="2M")

In [349]: p + 2
Out[349]: Period('2012-05', '2M')

In [350]: p - 1
Out[350]: Period('2011-11', '2M')

注意,Period只有具有相同的freq才能进行算数运算。包括 offsets 和 timedelta

In [352]: p = pd.Period("2014-07-01 09:00", freq="H")

In [353]: p + pd.offsets.Hour(2)
Out[353]: Period('2014-07-01 11:00', 'H')

In [354]: p + datetime.timedelta(minutes=120)
Out[354]: Period('2014-07-01 11:00', 'H')

In [355]: p + np.timedelta64(7200, "s")
Out[355]: Period('2014-07-01 11:00', 'H')

Period作为index可以自动被转换为PeriodIndex:

In [38]: periods = [pd.Period("2012-01"), pd.Period("2012-02"), pd.Period("2012-03")]

In [39]: ts = pd.Series(np.random.randn(3), periods)

In [40]: type(ts.index)
Out[40]: pandas.core.indexes.period.PeriodIndex

In [41]: ts.index
Out[41]: PeriodIndex(['2012-01', '2012-02', '2012-03'], dtype='period[M]', freq='M')

In [42]: ts
Out[42]:
2012-01   -1.135632
2012-02    1.212112
2012-03   -0.173215
Freq: M, dtype: float64

可以通过  pd.period_range 方法来创建 PeriodIndex:

In [359]: prng = pd.period_range("1/1/2011", "1/1/2012", freq="M")

In [360]: prng
Out[360]:
PeriodIndex(['2011-01', '2011-02', '2011-03', '2011-04', '2011-05', '2011-06',
             '2011-07', '2011-08', '2011-09', '2011-10', '2011-11', '2011-12',
             '2012-01'],
            dtype='period[M]', freq='M')

还可以通过PeriodIndex直接创建:

In [361]: pd.PeriodIndex(["2011-1", "2011-2", "2011-3"], freq="M")
Out[361]: PeriodIndex(['2011-01', '2011-02', '2011-03'], dtype='period[M]', freq='M')

DateOffset

DateOffset表示的是频率对象。它和Timedelta很类似,表示的是一个持续时间,但是有特殊的日历规则。比如Timedelta一天肯定是24小时,而在 DateOffset中根据夏令时的不同,一天可能会有23,24或者25小时。

# This particular day contains a day light savings time transition
In [144]: ts = pd.Timestamp("2016-10-30 00:00:00", tz="Europe/Helsinki")

# Respects absolute time
In [145]: ts + pd.Timedelta(days=1)
Out[145]: Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')

# Respects calendar time
In [146]: ts + pd.DateOffset(days=1)
Out[146]: Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki')

In [147]: friday = pd.Timestamp("2018-01-05")

In [148]: friday.day_name()
Out[148]: 'Friday'

# Add 2 business days (Friday --> Tuesday)
In [149]: two_business_days = 2 * pd.offsets.BDay()

In [150]: two_business_days.apply(friday)
Out[150]: Timestamp('2018-01-09 00:00:00')

In [151]: friday + two_business_days
Out[151]: Timestamp('2018-01-09 00:00:00')

In [152]: (friday + two_business_days).day_name()
Out[152]: 'Tuesday'

DateOffsets 和Frequency 运算是先关的,看一下可用的Date Offset 和它相关联的 Frequency:

Date Offset Frequency String 描述
DateOffset None 通用的offset 类
BDay or BusinessDay 'B' 工作日
CDay or CustomBusinessDay 'C' 自定义的工作日
Week 'W' 一周
WeekOfMonth 'WOM' 每个月的第几周的第几天
LastWeekOfMonth 'LWOM' 每个月最后一周的第几天
MonthEnd 'M' 日历月末
MonthBegin 'MS' 日历月初
BMonthEnd or BusinessMonthEnd 'BM' 营业月底
BMonthBegin or BusinessMonthBegin 'BMS' 营业月初
CBMonthEnd or CustomBusinessMonthEnd 'CBM' 自定义营业月底
CBMonthBegin or CustomBusinessMonthBegin 'CBMS' 自定义营业月初
SemiMonthEnd 'SM' 日历月末的第15天
SemiMonthBegin 'SMS' 日历月初的第15天
QuarterEnd 'Q' 日历季末
QuarterBegin 'QS' 日历季初
BQuarterEnd 'BQ 工作季末
BQuarterBegin 'BQS' 工作季初
FY5253Quarter 'REQ' 零售季( 52-53 week)
YearEnd 'A' 日历年末
YearBegin 'AS' or 'BYS' 日历年初
BYearEnd 'BA' 营业年末
BYearBegin 'BAS' 营业年初
FY5253 'RE' 零售年 (aka 52-53 week)
Easter None 复活节假期
BusinessHour 'BH' business hour
CustomBusinessHour 'CBH' custom business hour
Day 'D' 一天的绝对时间
Hour 'H' 一小时
Minute 'T' or 'min' 一分钟
Second 'S' 一秒钟
Milli 'L' or 'ms' 一微妙
Micro 'U' or 'us' 一毫秒
Nano 'N' 一纳秒

DateOffset还有两个方法  rollforward() 和 rollback() 可以将时间进行移动:

In [153]: ts = pd.Timestamp("2018-01-06 00:00:00")

In [154]: ts.day_name()
Out[154]: 'Saturday'

# BusinessHour's valid offset dates are Monday through Friday
In [155]: offset = pd.offsets.BusinessHour(start="09:00")

# Bring the date to the closest offset date (Monday)
In [156]: offset.rollforward(ts)
Out[156]: Timestamp('2018-01-08 09:00:00')

# Date is brought to the closest offset date first and then the hour is added
In [157]: ts + offset
Out[157]: Timestamp('2018-01-08 10:00:00')

上面的操作会自动保存小时,分钟等信息,如果想要设置为  00:00:00  , 可以调用normalize() 方法:

In [158]: ts = pd.Timestamp("2014-01-01 09:00")

In [159]: day = pd.offsets.Day()

In [160]: day.apply(ts)
Out[160]: Timestamp('2014-01-02 09:00:00')

In [161]: day.apply(ts).normalize()
Out[161]: Timestamp('2014-01-02 00:00:00')

In [162]: ts = pd.Timestamp("2014-01-01 22:00")

In [163]: hour = pd.offsets.Hour()

In [164]: hour.apply(ts)
Out[164]: Timestamp('2014-01-01 23:00:00')

In [165]: hour.apply(ts).normalize()
Out[165]: Timestamp('2014-01-01 00:00:00')

In [166]: hour.apply(pd.Timestamp("2014-01-01 23:30")).normalize()
Out[166]: Timestamp('2014-01-02 00:00:00')

作为index

时间可以作为index,并且作为index的时候会有一些很方便的特性。

可以直接使用时间来获取相应的数据:

In [99]: ts["1/31/2011"]
Out[99]: 0.11920871129693428

In [100]: ts[datetime.datetime(2011, 12, 25):]
Out[100]:
2011-12-30    0.56702
Freq: BM, dtype: float64

In [101]: ts["10/31/2011":"12/31/2011"]
Out[101]:
2011-10-31    0.271860
2011-11-30   -0.424972
2011-12-30    0.567020
Freq: BM, dtype: float64

获取全年的数据:

In [102]: ts["2011"]
Out[102]:
2011-01-31    0.119209
2011-02-28   -1.044236
2011-03-31   -0.861849
2011-04-29   -2.104569
2011-05-31   -0.494929
2011-06-30    1.071804
2011-07-29    0.721555
2011-08-31   -0.706771
2011-09-30   -1.039575
2011-10-31    0.271860
2011-11-30   -0.424972
2011-12-30    0.567020
Freq: BM, dtype: float64

获取某个月的数据:

In [103]: ts["2011-6"]
Out[103]:
2011-06-30    1.071804
Freq: BM, dtype: float64

DF可以接受时间作为loc的参数:

In [105]: dft
Out[105]:
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043

[100000 rows x 1 columns]

In [106]: dft.loc["2013"]
Out[106]:
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-03-11 10:35:00 -0.747967
2013-03-11 10:36:00 -0.034523
2013-03-11 10:37:00 -0.201754
2013-03-11 10:38:00 -1.509067
2013-03-11 10:39:00 -1.693043

[100000 rows x 1 columns]

时间切片:

In [107]: dft["2013-1":"2013-2"]
Out[107]:
                            A
2013-01-01 00:00:00  0.276232
2013-01-01 00:01:00 -1.087401
2013-01-01 00:02:00 -0.673690
2013-01-01 00:03:00  0.113648
2013-01-01 00:04:00 -1.478427
...                       ...
2013-02-28 23:55:00  0.850929
2013-02-28 23:56:00  0.976712
2013-02-28 23:57:00 -2.693884
2013-02-28 23:58:00 -1.575535
2013-02-28 23:59:00 -1.573517

[84960 rows x 1 columns]

切片和完全匹配

考虑下面的一个精度为分的Series对象:

In [120]: series_minute = pd.Series(
   .....:     [1, 2, 3],
   .....:     pd.DatetimeIndex(
   .....:         ["2011-12-31 23:59:00", "2012-01-01 00:00:00", "2012-01-01 00:02:00"]
   .....:     ),
   .....: )
   .....: 

In [121]: series_minute.index.resolution
Out[121]: 'minute'

时间精度小于分的话,返回的是一个Series对象:

In [122]: series_minute["2011-12-31 23"]
Out[122]:
2011-12-31 23:59:00    1
dtype: int64

时间精度大于分的话,返回的是一个常量:

In [123]: series_minute["2011-12-31 23:59"]
Out[123]: 1

In [124]: series_minute["2011-12-31 23:59:00"]
Out[124]: 1

同样的,如果精度为秒的话,小于秒会返回一个对象,等于秒会返回常量值。

时间序列的操作

Shifting

使用shift方法可以让 time series 进行相应的移动:

In [275]: ts = pd.Series(range(len(rng)), index=rng)

In [276]: ts = ts[:5]

In [277]: ts.shift(1)
Out[277]:
2012-01-01    NaN
2012-01-02    0.0
2012-01-03    1.0
Freq: D, dtype: float64

通过指定 freq , 可以设置shift的方式:

In [278]: ts.shift(5, freq="D")
Out[278]:
2012-01-06    0
2012-01-07    1
2012-01-08    2
Freq: D, dtype: int64

In [279]: ts.shift(5, freq=pd.offsets.BDay())
Out[279]:
2012-01-06    0
2012-01-09    1
2012-01-10    2
dtype: int64

In [280]: ts.shift(5, freq="BM")
Out[280]:
2012-05-31    0
2012-05-31    1
2012-05-31    2
dtype: int64

频率转换

时间序列可以通过调用 asfreq 的方法转换其频率:

In [281]: dr = pd.date_range("1/1/2010", periods=3, freq=3 * pd.offsets.BDay())

In [282]: ts = pd.Series(np.random.randn(3), index=dr)

In [283]: ts
Out[283]:
2010-01-01    1.494522
2010-01-06   -0.778425
2010-01-11   -0.253355
Freq: 3B, dtype: float64

In [284]: ts.asfreq(pd.offsets.BDay())
Out[284]:
2010-01-01    1.494522
2010-01-04         NaN
2010-01-05         NaN
2010-01-06   -0.778425
2010-01-07         NaN
2010-01-08         NaN
2010-01-11   -0.253355
Freq: B, dtype: float64

asfreq还可以指定修改频率过后的填充方法:

In [285]: ts.asfreq(pd.offsets.BDay(), method="pad")
Out[285]:
2010-01-01    1.494522
2010-01-04    1.494522
2010-01-05    1.494522
2010-01-06   -0.778425
2010-01-07   -0.778425
2010-01-08   -0.778425
2010-01-11   -0.253355
Freq: B, dtype: float64

Resampling 重新取样

给定的时间序列可以通过调用resample方法来重新取样:

In [286]: rng = pd.date_range("1/1/2012", periods=100, freq="S")

In [287]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [288]: ts.resample("5Min").sum()
Out[288]:
2012-01-01    25103
Freq: 5T, dtype: int64

resample 可以接受各类统计方法,比如: sum, mean, std, sem, max, min, median, first, last, ohlc。

In [289]: ts.resample("5Min").mean()
Out[289]:
2012-01-01    251.03
Freq: 5T, dtype: float64

In [290]: ts.resample("5Min").ohlc()
Out[290]:
            open  high  low  close
2012-01-01   308   460    9    205

In [291]: ts.resample("5Min").max()
Out[291]:
2012-01-01    460
Freq: 5T, dtype: int64

总结

到此这篇关于Python Pandas高级教程之时间处理的文章就介绍到这了,更多相关Pandas时间处理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 对pandas中时间窗函数rolling的使用详解

    在建模过程中,我们常常需要需要对有时间关系的数据进行整理.比如我们想要得到某一时刻过去30分钟的销量(产量,速度,消耗量等),传统方法复杂消耗资源较多,pandas提供的rolling使用简单,速度较快. 函数原型和参数说明 DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None) window:表示时间窗的大小,注意有两种形式

  • Pandas时间序列基础详解(转换,索引,切片)

    时间序列的类型: 时间戳:具体的时刻 固定的时间区间:例如2007年的1月或整个2010年 时间间隔:由开始时间和结束时间表示,时间区间可以被认为是间隔的特殊情况 实验时间和消耗时间:每个时间是相对于特定开始时间的时间的量度,(例如自从被放置在烤箱中每秒烘烤的饼干的直径) 日期和时间数据的类型及工具 datetime模块中的类型: date 使用公历日历存储日历日期(年,月,日) time 将时间存储为小时,分钟,秒,微秒 datetime 存储日期和时间 timedelta 表示两个datet

  • python+pandas+时间、日期以及时间序列处理方法

    先简单的了解下日期和时间数据类型及工具 python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime import timedel

  • pandas 两列时间相减换算为秒的方法

    如下所示: pd.to_datetime(data[data['last_O_XLMC']==data['O_XLMC']]['O_SJFCSJ'], format='%H:%M:%S')-pd.to_datetime(data['last_O_SJFCSJ'], format='%H:%M:%S')).dt.total_seconds() 以上这篇pandas 两列时间相减换算为秒的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • pandas 时间格式转换的实现

    OUTLINE  常见的时间字符串与timestamp之间的转换 日期与timestamp之间的转换 常见的时间字符串与timestamp之间的转换 这里说的字符串不是一般意义上的字符串,是指在读取日期类型的数据时,如果还没有及时解析字符串,它就还不是日期类型,那么此时的字符串该怎么与时间戳之间进行转换呢? ① 时间字符串转化成时间戳将时间字符串转化成时间戳分为两步: 第一步:将时间字符串转换成时间元组 第二步:将时间元组转换成时间戳类型 import time data['timestamp'

  • python pandas生成时间列表

    python生成一个日期列表 首先导入pandas import pandas as pd def get_date_list(begin_date,end_date): date_list = [x.strftime('%Y-%m-%d') for x in list(pd.date_range(start=begin_date, end=end_date))] return date_list ### 可以测试 print(get_date_list('2018-06-01','2018-0

  • pandas进行时间数据的转换和计算时间差并提取年月日

    #pd.to_datetime函数 #读取数据 import pandas as pd data = pd.read_csv('police.csv') #将stop_date转化为datetime的格式的dataframe,存到stop_datetime data['stop_datetime'] = pd.to_datetime(data.stop_date') #自定义一个时间,计算时间差 data_new = pd.to_datetime('2006-01-01') data['time

  • python时间日期函数与利用pandas进行时间序列处理详解

    python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

  • python pandas 时间日期的处理实现

    摘要在上一篇文章,时间日期处理的入门里面,我们简单介绍了一下载pandas里对时间日期的简单操作.下面将补充一些常用方法. 时间日期的比较 假设我们有数据集df如下 在对时间日期进行比较之前,要先转一下格式. 转格式的时候用 import pandas as pd pd.to_datetime() 我们需要先对df中的date这一列转为时间格式. df['date']=pd.to_datetime(df['date']) 转完后,我们可以输出数据集的数据类型来看看. print df.info(

  • Python Pandas高级教程之时间处理

    目录 简介 时间分类 Timestamp DatetimeIndex date_range 和 bdate_range origin 格式化 Period DateOffset 作为index 切片和完全匹配 时间序列的操作 Shifting 频率转换 Resampling 重新取样 总结 简介 时间应该是在数据处理中经常会用到的一种数据类型,除了Numpy中datetime64 和 timedelta64 这两种数据类型之外,pandas 还整合了其他python库比如  scikits.ti

  • python pandas数据处理教程之合并与拼接

    目录 前言 一.join 1.leftjoin 2.rightjoin 3.innerjoin 4.outjoin 二.merge 三.concat 1.纵向合并 2.横向合并 四.append 1.同结构数据追加 2.不同结构数据追加 3.追加合并多个数据集 五.combine_first 六.update 总结 前言 在许多应用中,数据可能来自不同的渠道,在数据处理的过程中常常需要将这些数据集进行组合合并拼接,形成更加丰富的数据集.pandas提供了多种方法完全可以满足数据处理的常用需求.具

  • Python Pandas数据中对时间的操作

    Pandas中对 时间 这个属性的处理有非常非常多的操作. 而本文对其中一个大家可能比较陌生的方法进行讲解.其他的我会陆续上传. 应用情景是这样的:考虑到有一个数据集,数据集中有用户注册账号的时间(年-月-日),如下图格式. 如果我们希望对用户账号注册时间转为具体的天数,我们可以用如下代码. import pandas as pd td=data['user_reg_tm'] Time=pd.to_datetime(td) Start=pd.datetime(2016,4,16) day=Sta

  • Python 数据处理库 pandas 入门教程基本操作

    pandas是一个Python语言的软件包,在我们使用Python语言进行机器学习编程的时候,这是一个非常常用的基础编程库.本文是对它的一个入门教程. pandas提供了快速,灵活和富有表现力的数据结构,目的是使"关系"或"标记"数据的工作既简单又直观.它旨在成为在Python中进行实际数据分析的高级构建块. 入门介绍 pandas适合于许多不同类型的数据,包括: 具有异构类型列的表格数据,例如SQL表格或Excel数据 有序和无序(不一定是固定频率)时间序列数据.

  • Python 数据处理库 pandas进阶教程

    前言 本文紧接着前一篇的入门教程,会介绍一些关于pandas的进阶知识.建议读者在阅读本文之前先看完pandas入门教程. 同样的,本文的测试数据和源码可以在这里获取: Github:pandas_tutorial. 数据访问 在入门教程中,我们已经使用过访问数据的方法.这里我们再集中看一下. 注:这里的数据访问方法既适用于Series,也适用于DataFrame. 基础方法:[]和. 这是两种最直观的方法,任何有面向对象编程经验的人应该都很容易理解.下面是一个代码示例: # select_da

  • Python Pandas的简单使用教程

    一. Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. 2.Pandas 是python的一个数据分析包,最初由AQR Capital Management

  • Python 高级教程之线程进程和协程的代码解析

    目录 进程 进程 5 种基本状态 进程的特点 进程间数据共享 进程池 进程的缺点 线程 线程的定义 使用线程模块的简单示例 代码解析 协程 协程与线程 Python 协程 协程的执行 关闭协程 链接协程以创建管道 总结 进程 进程是指在系统中正在运行的一个应用程序,是 CPU 的最小工作单元. 进程 5 种基本状态 一个进程至少具有 5 种基本状态:初始态.就绪状态.等待(阻塞)状态.执行状态.终止状态. 初始状态:进程刚被创建,由于其他进程正占有CPU资源,所以得不到执行,只能处于初始状态.

  • Python Pandas工具绘制数据图使用教程

    目录 背景介绍 折线图 条形图 水平条形图 堆积图 散点图 饼图 蜂巢图 箱线图 绘制子图 背景介绍 Pandas的DataFrame和Series在Matplotlib基础上封装了一个简易的绘图函数,使得数据处理过程中方便可视化查看结果. 折线图 import pandas as pd import numpy as np import matplotlib.pyplot as plt data=np.random.randn(5,2)*10 df=pd.DataFrame(np.abs(da

  • Python 第三方库 Pandas 数据分析教程

    目录 Pandas导入 Pandas与numpy的比较 Pandas的Series类型 Pandas的Series类型的创建 Pandas的Series类型的基本操作 pandas的DataFrame类型 pandas的DataFrame类型创建 Pandas的Dataframe类型的基本操作 pandas索引操作 pandas重新索引 pandas删除索引 pandas数据运算 算术运算 Pandas数据分析 pandas导入与导出数据 导入数据 导出数据 Pandas查看.检查数据 Pand

随机推荐