Java设计模式之java迭代器模式详解

目录
  • 前言
  • 介绍
  • 角色
  • 迭代器模式中的工厂模式
  • 学院遍历的案例
    • 分析
    • 解决方案
    • 基本介绍
    • 原理类图
    • 上面案例的类图
    • 案例实现代码
    • 案例总结
  • 应用实例
    • Java集合中的迭代器模式
      • 角色说明
    • Mybatis中的迭代器模式
  • 优点
  • 缺点
  • 总结

前言

很早之前,我们的电视调节频道是需要用电视上的按钮去控制的,那时并没有遥控器,如果我们想要调台,只能一次又一次的拧按钮。

越来越高级的电视机相继出现,现在的电话机,我们有了电视遥控器,我们使用电视遥控器来调台,这个时候,无需直接操作电视。

我们可以将电视机看成一个存储电视频道的集合对象,通过遥控器可以对电视机中的电视频道集合进行操作,如返回上一个频道、跳转到下一个频道或者跳转至指定的频道。遥控器为我们操作电视频道带来很大的方便,用户并不需要知道这些频道到底如何存储在电视机中。

介绍

迭代器模式(Iterator Pattern):提供一种方法来访问聚合对象,而不用暴露这个对象的内部表示,其别名为游标(Cursor)。迭代器模式是一种对象行为型模式。

角色

Iterator(抽象迭代器):它定义了访问和遍历元素的接口,声明了用于遍历数据元素的方法,例如:用于获取第一个元素的first()方法,用于访问下一个元素的next()方法,用于判断是否还有下一个元素的hasNext()方法,用于获取当前元素的currentItem()方法等,在具体迭代器中将实现这些方法。

ConcreteIterator(具体迭代器):它实现了抽象迭代器接口,完成对聚合对象的遍历,同时在具体迭代器中通过游标来记录在聚合对象中所处的当前位置,在具体实现时,游标通常是一个表示位置的非负整数。

Aggregate(抽象聚合类):它用于存储和管理元素对象,声明一个createIterator()方法用于创建一个迭代器对象,充当抽象迭代器工厂角色。

ConcreteAggregate(具体聚合类):它实现了在抽象聚合类中声明的createIterator()方法,该方法返回一个与该具体聚合类对应的具体迭代器ConcreteIterator实例。

在迭代器模式中,提供了一个外部的迭代器来对聚合对象进行访问和遍历,迭代器定义了一个访问该聚合元素的接口,并且可以跟踪当前遍历的元素,了解哪些元素已经遍历过而哪些没有。迭代器的引入,将使得对一个复杂聚合对象的操作变得简单。

迭代器模式中的工厂模式

在迭代器模式中应用了工厂方法模式,抽象迭代器对应于抽象产品角色,具体迭代器对应于具体产品角色,抽象聚合类对应于抽象工厂角色,具体聚合类对应于具体工厂角色。

学院遍历的案例

编写程序展示一个学校院系结构:需求是这样,要在一个页面中展示出学校的院系 组成, 一个学校有多个学院,一个学院有多个系。

分析

每一个学院都有添加系的功能,如果我们将遍历的方法hasNext() next()等写入。这将导致聚合类的职责过重,它既负责存储和管理数据,又负责遍历数据,违反了“单一职责原则”,由于聚合类非常庞大,实现代码过长,还将给测试和维护增加难度。

那么这个时候,我们也许会这样想,因为有多个学院,我们不妨将学院封装为接口,但是在这个接口中充斥着大量方法,不利于子类实现,违反了“接口隔离原则”。

解决方案

解决方案之一就是将聚合类中负责遍历数据的方法提取出来,封装到专门的类中,实现数据存储和数据遍历分离,无须暴露聚合类的内部属性即可对其进行操作,而这正是迭代器模式的意图所在。

基本介绍

  • 迭代器模式(Iterator Pattern)是常用的设计模式,属于行为型模式
  • 如果我们的集合元素是用不同的方式实现的,有数组,还有java的集合类,或者还有其他方式,当客户端要遍历这些集合元素的时候就要使用多种遍历 方式,而且还会暴露元素的内部结构,可以考虑使用迭代器模式解决。
  • 迭代器模式,提供一种遍历集合元素的统一接口,用一致的方法遍历集合元素, 不需要知道集合对象的底层表示,即:不暴露其内部的结构。

原理类图

上面案例的类图

案例实现代码

顶层迭代器接口为Java内部提供的Iterator接口:

计算机学院迭代器类,负责遍历计算机学院类下面的系集合

public class ComputerCollegeIterator implements Iterator {
    //以数组的方式存放计算机学院下面的各个系
    private Department[] departments;
    //当前遍历到的位置
    private  Integer position=0;
    //通过构造器获得要遍历的集合
    public ComputerCollegeIterator(Department[] departments)
    {
        this.departments=departments;
    }
    //判断是否还存在下一个元素
    @Override
    public boolean hasNext() {
        if(position>departments.length-1||departments[position]==null)
        {
            return false;
        }
        return true;
    }
    //返回下一个元素
    @Override
    public Object next() {
        return departments[position++];
    }
    //删除的方法默认空实现
    @Override
    public void remove()
    {}
}

信息学院迭代器类,负责遍历信息学院下面的系集合

//信息学院
public class InfoCollegeIterator implements Iterator
{
 //以list的方式存放系
    private List<Department> departments;
    //索引
    private  Integer index=0;
   //构造器得到要遍历的集合
    InfoCollegeIterator(List<Department> departments)
    {
        this.departments=departments;
    }
    //判断list集合中是否还有下一个元素
    @Override
    public boolean hasNext() {
          if(index>departments.size()-1)
          {
              return false;
          }
          return true;
    }
    @Override
    public Object next() {
        return departments.get(index++);
    }
    @Override
    public void remove() {
    }
}

这里对应的各个学院的迭代器类,单独负责遍历当前学院下面系集合的逻辑

这里的优化措施可以将两个迭代器里面重复内容抽取出来,放到CollegeIterator类里面进行默认实现,该类继承Iterator接口,而上面两个学院迭代器类继承该默认实现类

迭代器遍历集合里面存放的元素:

@Data
@AllArgsConstructor
@NoArgsConstructor
//学院下面的各个系--也是迭代器需要遍历的对象
public class Department
{
    private String name;//名字
    private Integer score;//分数线
}

顶层抽象学院接口

//抽象学院接口
public interface College
{
  //获取当前系的名字
    void getName();
    //增加系
    void addDepartment(String name,Integer score);
    //返回一个迭代器,负责遍历
    Iterator createIterator();
}

计算机学院,管理学院下面的各个系

public class ComputerCollege implements College{
    //数组默认大小为10
    private Department[] departments=new Department[10];
    private  Integer numOfDepartment=0;//当前数组中保存的对象个数
    @Override
    public void getName() {
        System.out.println("计算机学院");
    }
   //获取到对应的系集合
    public ComputerCollege(Department[] departments)
    {
        int i=0;
        for (Department department : departments) {
            this.departments[i++]=department;
        }
    }
 //增加系
    @Override
    public void addDepartment(String name,Integer score)
    {
     Department department=new Department(name,score);
     departments[numOfDepartment++]=department;
    }
//创建对应的迭代器,并传入要遍历的集合给迭代器
    @Override
    public Iterator createIterator() {
        return new ComputerCollegeIterator(departments);
    }
}

信息学院,负责管理下面的各个系:

//信息学院
public class InfoCollegeIterator implements Iterator
{
 //以list的方式存放系
    private List<Department> departments;
    //索引
    private  Integer index=0;
    InfoCollegeIterator(List<Department> departments)
    {
        this.departments=departments;
    }
    //判断list集合中是否还有下一个元素
    @Override
    public boolean hasNext() {
          if(index>departments.size()-1)
          {
              return false;
          }
          return true;
    }
    @Override
    public Object next() {
        return departments.get(index++);
    }
    @Override
    public void remove() {
    }
}

输出类,主要负责输出功能:

public class OutputImp
{
 //学院集合
 private List<College> collegeList;
 public OutputImp(List<College> collegeList)
 {
     this.collegeList=collegeList;
 }
 //输出所有学院,以及学院下面的所有系
    public  void printColleges()
    {
        //获取到遍历学院集合需要用到的迭代器
        //list集合实现了iterator接口
        Iterator<College> collegeIterator = collegeList.iterator();
        while(collegeIterator.hasNext())
        {
            College college = collegeIterator.next();
            System.out.println("当前学院:");
            college.getName();
            System.out.println("当前学院下面的系:");
            //如果要遍历当前学院下面的所有系,需要获取对应的迭代器
            printDeparts(college.createIterator());
            System.out.println("=============================");
        }
    }
 //输出当前学院的所有系
 protected void printDeparts(Iterator iterator)
 {
     while(iterator.hasNext())
     {
         Department department=(Department)iterator.next();
         System.out.println(department.getName());
     }
 }
}

客户端调用:

    public static void main(String[] args) {
        List<College> collegeList=new ArrayList<>();
        Department[] departments=new Department[3];
        departments[0]=new Department("c++",520);
        departments[1]=new Department("java",521);
        College college=new ComputerCollege(departments);
         List<Department> departmentList=new ArrayList<>();
        departmentList.add(new Department("密码学",520));
        College college1=new InfoCollege(departmentList);
        collegeList.add(college);
        collegeList.add(college1);
        OutputImp outputImp=new OutputImp(collegeList);
        outputImp.printColleges();
    }

案例总结

如果需要增加一个新的具体聚合类,只需增加一个新的聚合子类和一个新的具体迭代器类即可,原有类库代码无须修改,符合“开闭原则”;

如果需要为聚合类更换一个迭代器,只需要增加一个新的具体迭代器类作为抽象迭代器类的子类,重新实现遍历方法,原有迭代器代码无须修改,也符合“开闭原则”;

但是如果要在迭代器中增加新的方法,则需要修改抽象迭代器源代码,这将违背“开闭原则”。

应用实例

Java集合中的迭代器模式

看 java.util.ArrayList 类

public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable {
    transient Object[] elementData; // non-private to simplify nested class access
    private int size;
    public E get(int index) {
        rangeCheck(index);
        return elementData(index);
    }
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;
        return true;
    }
    public ListIterator<E> listIterator() {
        return new ListItr(0);
    }
    public ListIterator<E> listIterator(int index) {
        if (index < 0 || index > size)
            throw new IndexOutOfBoundsException("Index: "+index);
        return new ListItr(index);
    }
    public Iterator<E> iterator() {
        return new Itr();
    }
    private class Itr implements Iterator<E> {
        int cursor;       // index of next element to return
        int lastRet = -1; // index of last element returned; -1 if no such
        int expectedModCount = modCount;
        public boolean hasNext() {
            return cursor != size;
        }
        public E next() {
            //...
        }
        public E next() {
            //...
        }
        public void remove() {
            //...
        }
        //...
    }
    private class ListItr extends Itr implements ListIterator<E> {
        public boolean hasPrevious() {
            return cursor != 0;
        }
        public int nextIndex() {
            return cursor;
        }
        public int previousIndex() {
            return cursor - 1;
        }
        public E previous() {
            //...
        }
        public void set(E e) {
            //...
        }
        public void add(E e) {
            //...
        }
    //...
}

ArrayList 源码中看到了有两个迭代器 ItrListItr,分别实现 Iterator 和 ListIterator 接口;

第一个当然很容易看明白,它跟我们示例的迭代器的区别是这里是一个内部类,可以直接使用 ArrayList 的数据列表;第二个迭代器是第一次见到, ListIterator Iterator 有什么区别呢?

先看 ListIterator 源码

public interface ListIterator<E> extends Iterator<E> {
    boolean hasNext();
    E next();
    boolean hasPrevious();  // 返回该迭代器关联的集合是否还有上一个元素
    E previous();           // 返回该迭代器的上一个元素
    int nextIndex();        // 返回列表中ListIterator所需位置后面元素的索引
    int previousIndex();    // 返回列表中ListIterator所需位置前面元素的索引
    void remove();
    void set(E var1);       // 从列表中将next()或previous()返回的最后一个元素更改为指定元素e
    void add(E var1);
}

接着是 Iterator 的源码

public interface Iterator<E> {
    boolean hasNext();
    E next();
    default void remove() {
        throw new UnsupportedOperationException("remove");
    }
    // 备注:JAVA8允许接口方法定义默认实现
    default void forEachRemaining(Consumer<? super E> action) {
        Objects.requireNonNull(action);
        while (hasNext())
            action.accept(next());
    }
}

通过源码我们看出:ListIterator 是一个功能更加强大的迭代器,它继承于 Iterator 接口,只能用于各种List类型的访问。可以通过调用 listIterator() 方法产生一个指向List开始处的 ListIterator, 还可以调用 listIterator(n) 方法创建一个一开始就指向列表索引为n的元素处的 ListIterator

Iterator 和 ListIterator 主要区别概括如下:

  • ListIterator 有 add() 方法,可以向List中添加对象,而 Iterator 不能
  • ListIterator 和 Iterator 都有 hasNext() 和 next() 方法,可以实现顺序向后遍历,但是ListIterator 有 hasPrevious() 和 previous()方法,可以实现逆向(顺序向前)遍历。Iterator 就不可以。
  • ListIterator 可以定位当前的索引位置,nextIndex() 和 previousIndex()可以实现。Iterator 没有此功能。
  • 都可实现删除对象,但是 ListIterator 可以实现对象的修改,set() 方法可以实现。Iierator仅能遍历,不能修改。

角色说明

  • 内部类Itr 充当具体实现迭代器Iterator 的类, 作为ArrayList 内部类
  • List 就是充当了聚合接口,含有一个iterator() 方法,返回一个迭代器对象
  • ArrayList 是实现聚合接口List 的子类,实现了iterator()
  • Iterator 接口系统提供
  • 迭代器模式解决了 不同集合(ArrayList ,LinkedList) 统一遍历问题

Mybatis中的迭代器模式

当查询数据库返回大量的数据项时可以使用游标 Cursor,利用其中的迭代器可以懒加载数据,避免因为一次性加载所有数据导致内存奔溃,Mybatis Cursor 接口提供了一个默认实现类 DefaultCursor,代码如下

public interface Cursor<T> extends Closeable, Iterable<T> {
    boolean isOpen();
    boolean isConsumed();
    int getCurrentIndex();
}
public class DefaultCursor<T> implements Cursor<T> {
    private final DefaultResultSetHandler resultSetHandler;
    private final ResultMap resultMap;
    private final ResultSetWrapper rsw;
    private final RowBounds rowBounds;
    private final ObjectWrapperResultHandler<T> objectWrapperResultHandler = new ObjectWrapperResultHandler<T>();
    // 游标迭代器
    private final CursorIterator cursorIterator = new CursorIterator();
    protected T fetchNextUsingRowBound() {
        T result = fetchNextObjectFromDatabase();
        while (result != null && indexWithRowBound < rowBounds.getOffset()) {
            result = fetchNextObjectFromDatabase();
        }
        return result;
    }
    @Override
    public Iterator<T> iterator() {
        if (iteratorRetrieved) {
            throw new IllegalStateException("Cannot open more than one iterator on a Cursor");
        }
        iteratorRetrieved = true;
        return cursorIterator;
    }
    private class CursorIterator implements Iterator<T> {
        T object;
        int iteratorIndex = -1;
        @Override
        public boolean hasNext() {
            if (object == null) {
                object = fetchNextUsingRowBound();
            }
            return object != null;
        }
        @Override
        public T next() {
            T next = object;
            if (next == null) {
                next = fetchNextUsingRowBound();
            }
            if (next != null) {
                object = null;
                iteratorIndex++;
                return next;
            }
            throw new NoSuchElementException();
        }
        @Override
        public void remove() {
            throw new UnsupportedOperationException("Cannot remove element from Cursor");
        }
    }
    // ...
}

游标迭代器 CursorIterator 实现了 java.util.Iterator 迭代器接口,这里的迭代器模式跟 ArrayList 中的迭代器几乎一样

优点

  • 提供一个统一的方法遍历对象,客户不用再考虑聚合的类型,使用一种方法就可以遍历对象了。
  • 隐藏了聚合的内部结构,客户端要遍历聚合的时候只能取到迭代器,而不会知道聚合的具体组成。
  • 提供了一种设计思想,就是一个类应该只有一个引起变化的原因(叫做单一责任
  • 原则)。在聚合类中,我们把迭代器分开,就是要把管理对象集合和遍历对象集
  • 合的责任分开,这样一来集合改变的话,只影响到聚合对象。而如果遍历方式改变的话,只影响到了迭代器。
  • 当要展示一组相似对象,或者遍历一组相同对象时使用, 适合使用迭代器模式

缺点

  • 每个聚合对象都要一个迭代器,会生成多个迭代器不好管理类

总结

本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • 23种设计模式(14)java迭代器模式

    23种设计模式第十四篇:java迭代器模式 定义:提供一种方法访问一个容器对象中各个元素,而又不暴露该对象的内部细节. 类型:行为类模式 类图: 如果要问java中使用最多的一种模式,答案不是单例模式,也不是工厂模式,更不是策略模式,而是迭代器模式,先来看一段代码吧: public static void print(Collection coll){ Iterator it = coll.iterator(); while(it.hasNext()){ String str = (String

  • Java使用设计模式中迭代器模式构建项目的代码结构示例

    迭代器(Iterator)模式,又叫做游标(Cursor)模式.GOF给出的定义为:提供一种方法访问一个容器(container)对象中各个元素,而又不需暴露该对象的内部细节.   迭代器模式由以下角色组成: 迭代器角色(Iterator):迭代器角色负责定义访问和遍历元素的接口. 具体迭代器角色(Concrete Iterator):具体迭代器角色要实现迭代器接口,并要记录遍历中的当前位置. 容器角色(Container):容器角色负责提供创建具体迭代器角色的接口. 具体容器角色(Concre

  • 详解Java设计模式——迭代器模式

    迭代子模式 顾名思义,迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松.这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问.我们看下关系图: 这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作,MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码: 两个接口: public interface Collection { pub

  • 使用迭代器模式来进行Java的设计模式编程

    定义:提供一种方法访问一个容器对象中各个元素,而又不暴露该对象的内部细节. 类型:行为类模式 类图: 如果要问java中使用最多的一种模式,答案不是单例模式,也不是工厂模式,更不是策略模式,而是迭代器模式,先来看一段代码吧: public static void print(Collection coll){ Iterator it = coll.iterator(); while(it.hasNext()){ String str = (String)it.next(); System.out

  • Java设计模式之迭代器模式_动力节点Java学院整理

    定义:提供一种方法访问一个容器对象中各个元素,而又不暴露该对象的内部细节. 类型:行为类模式 类图: 如果要问Java中使用最多的一种模式,答案不是单例模式,也不是工厂模式,更不是策略模式,而是迭代器模式,先来看一段代码吧: public static void print(Collection coll){ Iterator it = coll.iterator(); while(it.hasNext()){ String str = (String)it.next(); System.out

  • Java设计模式之抽象工厂模式详解

    一.什么是抽象工厂模式 为创建一组相关或相互依赖的对象提供一个接口,而且无需指定他们的具体类,这称之为抽象工厂模式(Abstract Factory).我们并不关心零件的具体实现,而是只关心接口(API).我们仅使用该接口(API)将零件组装称为产品. 二.示例程序   1.抽象的零件:Item类 package com.as.module.abstractfactory; /** * 抽象的零件 * @author Andy * @date 2021/4/29 23:16 */ public

  • Java设计模式之职责链模式详解

    目录 前言 一.职责链模式的定义与特点 二.职责链模式的结构 三.职责链模式案例 前言 本文简单介绍了设计模式的一种--职责链模式  一.职责链模式的定义与特点 定义: 为了避免请求发送者与多个请求处理者耦合在一起,于是将所有请求的处理者通过前一对象记住其下一个对象的引用而连成一条链:当有请求发生时,可将请求沿着这条链传递,直到有对象处理它为止. 比如我们的审批制度,低等级的审批不了的,交给上一级审批,依次类推,直到审批结束. 在责任链模式中,客户只需要将请求发送到责任链上即可,无须关心请求的处

  • Java设计模式中的外观模式详解

    目录 模式介绍 UML类图 外观模式案例: 外观模式的注意事项和细节 模式介绍 外观模式(Facade) ,也叫“过程模式:外观模式为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子系统更加容易使用. 外观模式通过定义一个一致的接口,用以屏蔽内部子系统的细节,使得调用端只需跟这个接口发生调用,而无需关心这个子系统的内部细节. UML类图 类图解析: Facade:为调用端提供统一的调用接口,外观类知道哪些子系统负责处理请求,从而将调用端的请求代理给适当子系统对象

  • Java设计模式中的门面模式详解

    目录 门面模式 概述 应用场景 目的 优缺点 主要角色 门面模式的基本使用 创建子系统角色 创建外观角色 客户端调用 门面模式实现商城下单 库存系统 支付系统 物流系统 入口系统 客户端调用 门面模式 概述 门面模式(Facade Pattern)又叫外观模式,属于结构性模式. 它提供一个统一的接口去访问多个子系统的多个不同的接口,它为子系统中的一组接口提供一个统一的高层接口.使得子系统更容易使用. 客户端不需要知道系统内部的复杂联系,只需定义系统的入口.即在客户端和复杂系统之间再加一层,这一层

  • Java设计模式之工厂方法模式详解

    目录 1.工厂方法是什么 2.如何实现 3.代码实现 4.工厂方法模式的优点 5.拓展 1.工厂方法是什么 众所周知,工厂是生产产品的,并且产品供消费者使用.消费者不必关心产品的生产过程,只需要关心用哪种产品就行. 在Java世界中,工厂方法模式和现实功能类似.工厂即一个工厂类,提供获得对象(产品)的方法(工厂方法).其他类(消费者)需要用到某个对象时,只需调用工厂方法就行,不必new这个对象. 2.如何实现 1)创建产品的抽象类或接口---抽象产品 2)创建具体产品的类---具体产品 3)创建

  • Java设计模式中责任链模式详解

    目录 1.责任链设计模式的定义 2.责任链设计模式的优点与不足 3.责任链设计模式的实现思路 4.责任链设计模式应用实例 5.责任链设计模式应用场景 编程是一门艺术,大批量的改动显然是非常丑陋的做法,用心的琢磨写的代码让它变的更美观. 在现实生活中,一个事件需要经过多个对象处理是很常见的场景.例如,采购审批流程.请假流程等.公司员工请假,可批假的领导有部门负责人.副总经理.总经理等,但每个领导能批准的天数不同,员工必须根据需要请假的天数去找不同的领导签名,也就是说员工必须记住每个领导的姓名.电话

  • Java设计模式之静态工厂模式详解

    本文实例讲述了Java设计模式之静态工厂模式.分享给大家供大家参考,具体如下: 静态工厂模式(static factory)也叫简单工厂模式. 涉及到3个角色:工厂类角色,抽象产品类角色和具体产品类角色. 抽象产品类可以使用接口或者父类来描述产品对象的行为特征. 具体产品类就是某一具体的对象. 静态工厂类有一个静态的方法,含有判断逻辑,决定要创建哪一种具体的产品对象. 其设计模式如下: 抽象产品类  IProduct package org.test.design.sf; public inte

  • JAVA设计模式之责任链模式详解

    在阎宏博士的<JAVA与模式>一书中开头是这样描述责任链(Chain of Responsibility)模式的: 责任链模式是一种对象的行为模式.在责任链模式里,很多对象由每一个对象对其下家的引用而连接起来形成一条链.请求在这个链上传递,直到链上的某一个对象决定处理此请求.发出这个请求的客户端并不知道链上的哪一个对象最终处理这个请求,这使得系统可以在不影响客户端的情况下动态地重新组织和分配责任. 从击鼓传花谈起 击鼓传花是一种热闹而又紧张的饮酒游戏.在酒宴上宾客依次坐定位置,由一人击鼓,击鼓

  • Java设计模式之装饰者模式详解

    目录 具体代码: Person: Student: Doctor: DecoratePerson: ShoeDecorate: DressDecorate: 总结 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 以一个Person对象为例.Person作为一个接口,Student(学生)和Doctor(医生)为Person接口的两个具体类,DecoratorPerson为Pers

  • JAVA设计模式之调停者模式详解

    在阎宏博士的<JAVA与模式>一书中开头是这样描述调停者(Mediator)模式的: 调停者模式是对象的行为模式.调停者模式包装了一系列对象相互作用的方式,使得这些对象不必相互明显引用.从而使它们可以较松散地耦合.当这些对象中的某些对象之间的相互作用发生改变时,不会立即影响到其他的一些对象之间的相互作用.从而保证这些相互作用可以彼此独立地变化. 为什么需要调停者 如下图所示,这个示意图中有大量的对象,这些对象既会影响别的对象,又会被别的对象所影响,因此常常叫做同事(Colleague)对象.这

随机推荐