Python3实现打格点算法的GPU加速实例详解

目录
  • 技术背景
  • 打格点算法实现
  • 打格点算法加速
  • 总结概要

技术背景

在数学和物理学领域,总是充满了各种连续的函数模型。而当我们用现代计算机的技术去处理这些问题的时候,事实上是无法直接处理连续模型的,绝大多数的情况下都要转化成一个离散的模型再进行数值的计算。比如计算数值的积分,计算数值的二阶导数(海森矩阵)等等。这里我们所介绍的打格点的算法,正是一种典型的离散化方法。这个对空间做离散化的方法,可以在很大程度上简化运算量。比如在分子动力学模拟中,计算近邻表的时候,如果不采用打格点的方法,那么就要针对整个空间所有的原子进行搜索,计算出来距离再判断是否近邻。而如果采用打格点的方法,我们只需要先遍历一遍原子对齐进行打格点的离散化,之后再计算近邻表的时候,只需要计算三维空间下邻近的27个格子中的原子是否满足近邻条件即可。在这篇文章中,我们主要探讨如何用GPU来实现打格点的算法。

打格点算法实现

我们先来用一个例子说明一下什么叫打格点。对于一个给定所有原子坐标的系统,也就是已知了[x,y,z],我们需要得到的是这些原子所在的对应的格子位置[nx,ny,nz]。我们先看一下在CPU上的实现方案,是一个遍历一次的算法:

# cuda_grid.py

from numba import jit
from numba import cuda
import numpy as np

def grid_by_cpu(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

if __name__=='__main__':
    np.random.seed(1)
    atoms = 4
    grid_size = 0.1
    crd = np.random.random((atoms,3)).astype(np.float32)
    xmin = min(crd[:,0])
    ymin = min(crd[:,1])
    zmin = min(crd[:,2])
    xmax = max(crd[:,0])
    ymax = max(crd[:,1])
    zmax = max(crd[:,2])
    xgrids = int((xmax-xmin)/grid_size)+1
    ygrids = int((ymax-ymin)/grid_size)+1
    zgrids = int((zmax-zmin)/grid_size)+1
    rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32)

    grids = np.ones_like(crd)*(-1)
    grids = grids.astype(np.float32)
    grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids)
    print (crd)
    print (grids_cpu)

    import matplotlib.pyplot as plt
    plt.figure()
    plt.plot(crd[:,0], crd[:,1], 'o', color='red')
    for grid in range(ygrids+1):
        plt.plot([xmin,xmin+grid_size*xgrids], [ymin+grid_size*grid,ymin+grid_size*grid], color='black')
    for grid in range(xgrids+1):
        plt.plot([xmin+grid_size*grid,xmin+grid_size*grid], [ymin,ymin+grid_size*ygrids], color='black')
    plt.savefig('Atom_Grids.png')

输出结果如下,

$ python3 cuda_grid.py
[[4.17021990e-01 7.20324516e-01 1.14374816e-04]
 [3.02332580e-01 1.46755889e-01 9.23385918e-02]
 [1.86260208e-01 3.45560730e-01 3.96767467e-01]
 [5.38816750e-01 4.19194520e-01 6.85219526e-01]]
[[2. 5. 0.]
 [1. 0. 0.]
 [0. 1. 3.]
 [3. 2. 6.]]

上面两个打印输出就分别对应于[x,y,z]和[nx,ny,nz],比如第一个原子被放到了编号为[2,5,0]的格点。那么为了方便理解打格点的方法,我们把这个三维空间的原子系统和打格点以后的标号取前两个维度来可视化一下结果,作图以后效果如下:

我们可以看到,这些红色的点就是原子所处的位置,而黑色的网格线就是我们所标记的格点。在原子数量比较多的时候,有可能出现在一个网格中存在很多个原子的情况,所以如何打格点,格点大小如何去定义,这都是不同场景下的经验参数,需要大家一起去摸索。

打格点算法加速

在上面这个算法实现中,我们主要是用到了一个for循环,这时候我们可以想到numba所支持的向量化运算,还有GPU硬件加速,这里我们先对比一下三种实现方案的计算结果:

# cuda_grid.py

from numba import jit
from numba import cuda
import numpy as np

def grid_by_cpu(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@jit
def grid_by_jit(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@cuda.jit
def grid_by_gpu(crd, rxyz, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    i,j = cuda.grid(2)
    grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3])

if __name__=='__main__':
    np.random.seed(1)
    atoms = 4
    grid_size = 0.1
    crd = np.random.random((atoms,3)).astype(np.float32)
    xmin = min(crd[:,0])
    ymin = min(crd[:,1])
    zmin = min(crd[:,2])
    xmax = max(crd[:,0])
    ymax = max(crd[:,1])
    zmax = max(crd[:,2])
    xgrids = int((xmax-xmin)/grid_size)+1
    ygrids = int((ymax-ymin)/grid_size)+1
    zgrids = int((zmax-zmin)/grid_size)+1
    rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32)
    crd_cuda = cuda.to_device(crd)
    rxyz_cuda = cuda.to_device(rxyz)

    grids = np.ones_like(crd)*(-1)
    grids = grids.astype(np.float32)
    grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids)

    grids = np.ones_like(crd)*(-1)
    grids_jit = grid_by_jit(crd, rxyz, atoms, grids)

    grids = np.ones_like(crd)*(-1)
    grids_cuda = cuda.to_device(grids)

    grid_by_gpu[(atoms,3),(1,1)](crd_cuda,
                                 rxyz_cuda,
                                 grids_cuda)

    print (crd)
    print (grids_cpu)
    print (grids_jit)
    print (grids_cuda.copy_to_host())

输出结果如下:

$ python3 cuda_grid.py
/home/dechin/anaconda3/lib/python3.8/site-packages/numba/cuda/compiler.py:865: NumbaPerformanceWarning: Grid size (12) < 2 * SM count (72) will likely result in GPU under utilization due to low occupancy.
  warn(NumbaPerformanceWarning(msg))
[[4.17021990e-01 7.20324516e-01 1.14374816e-04]
 [3.02332580e-01 1.46755889e-01 9.23385918e-02]
 [1.86260208e-01 3.45560730e-01 3.96767467e-01]
 [5.38816750e-01 4.19194520e-01 6.85219526e-01]]
[[2. 5. 0.]
 [1. 0. 0.]
 [0. 1. 3.]
 [3. 2. 6.]]
[[2. 5. 0.]
 [1. 0. 0.]
 [0. 1. 3.]
 [3. 2. 6.]]
[[2. 5. 0.]
 [1. 0. 0.]
 [0. 1. 3.]
 [3. 2. 6.]]

我们先看到这里面的告警信息,因为GPU硬件加速要在一定密度的运算量之上才能够有比较明显的加速效果。比如说我们只是计算两个数字的加和,那么是完全没有必要使用到GPU的。但是如果我们要计算两个非常大的数组的加和,那么这个时候GPU就能够发挥出非常大的价值。因为这里我们的案例中只有4个原子,因此提示我们这时候是体现不出来GPU的加速效果的。我们仅仅关注下这里的运算结果,在不同体系下得到的格点结果是一致的,那么接下来就可以对比一下几种不同实现方式的速度差异。

# cuda_grid.py

from numba import jit
from numba import cuda
import numpy as np

def grid_by_cpu(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@jit
def grid_by_jit(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@cuda.jit
def grid_by_gpu(crd, rxyz, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    i,j = cuda.grid(2)
    grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3])

if __name__=='__main__':
    import time
    from tqdm import trange

    np.random.seed(1)
    atoms = 100000
    grid_size = 0.1
    crd = np.random.random((atoms,3)).astype(np.float32)
    xmin = min(crd[:,0])
    ymin = min(crd[:,1])
    zmin = min(crd[:,2])
    xmax = max(crd[:,0])
    ymax = max(crd[:,1])
    zmax = max(crd[:,2])
    xgrids = int((xmax-xmin)/grid_size)+1
    ygrids = int((ymax-ymin)/grid_size)+1
    zgrids = int((zmax-zmin)/grid_size)+1
    rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32)
    crd_cuda = cuda.to_device(crd)
    rxyz_cuda = cuda.to_device(rxyz)

    cpu_time = 0
    jit_time = 0
    gpu_time = 0

    for i in trange(100):
        grids = np.ones_like(crd)*(-1)
        grids = grids.astype(np.float32)
        time0 = time.time()
        grids_cpu = grid_by_cpu(crd, rxyz, atoms, grids)
        time1 = time.time()

        grids = np.ones_like(crd)*(-1)
        time2 = time.time()
        grids_jit = grid_by_jit(crd, rxyz, atoms, grids)
        time3 = time.time()

        grids = np.ones_like(crd)*(-1)
        grids_cuda = cuda.to_device(grids)
        time4 = time.time()
        grid_by_gpu[(atoms,3),(1,1)](crd_cuda,
                                    rxyz_cuda,
                                    grids_cuda)
        time5 = time.time()

        if i != 0:
            cpu_time += time1 - time0
            jit_time += time3 - time2
            gpu_time += time5 - time4

    print ('The time cost of CPU calculation is: {}s'.format(cpu_time))
    print ('The time cost of JIT calculation is: {}s'.format(jit_time))
    print ('The time cost of GPU calculation is: {}s'.format(gpu_time))

输出结果如下:

$ python3 cuda_grid.py
100%|███████████████████████████| 100/100 [00:23<00:00,  4.18it/s]
The time cost of CPU calculation is: 23.01943016052246s
The time cost of JIT calculation is: 0.04810166358947754s
The time cost of GPU calculation is: 0.01806473731994629s

在100000个原子的体系规模下,普通的for循环实现效率就非常的低下,需要23s,而经过向量化运算的加速之后,直接飞升到了0.048s,而GPU上的加速更是达到了0.018s,相比于没有GPU硬件加速的场景,实现了将近2倍的加速。但是这还远远不是GPU加速的上限,让我们再测试一个更大的案例:

# cuda_grid.py

from numba import jit
from numba import cuda
import numpy as np

def grid_by_cpu(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@jit
def grid_by_jit(crd, rxyz, atoms, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    for i in range(atoms):
        grids[i][0] = int((crd[i][0]-rxyz[0])/rxyz[3])
        grids[i][1] = int((crd[i][1]-rxyz[1])/rxyz[3])
        grids[i][2] = int((crd[i][2]-rxyz[2])/rxyz[3])
    return grids

@cuda.jit
def grid_by_gpu(crd, rxyz, grids):
    """Transform coordinates [x,y,z] into grids [nx,ny,nz].
    Args:
        crd(list): The 3-D coordinates of atoms.
        rxyz(list): The list includes xmin,ymin,zmin,grid_num.
        atoms(int): The total number of atoms.
        grids(list): The transformed grids matrix.
    """
    i,j = cuda.grid(2)
    grids[i][j] = int((crd[i][j]-rxyz[j])/rxyz[3])

if __name__=='__main__':
    import time
    from tqdm import trange

    np.random.seed(1)
    atoms = 5000000
    grid_size = 0.1
    crd = np.random.random((atoms,3)).astype(np.float32)
    xmin = min(crd[:,0])
    ymin = min(crd[:,1])
    zmin = min(crd[:,2])
    xmax = max(crd[:,0])
    ymax = max(crd[:,1])
    zmax = max(crd[:,2])
    xgrids = int((xmax-xmin)/grid_size)+1
    ygrids = int((ymax-ymin)/grid_size)+1
    zgrids = int((zmax-zmin)/grid_size)+1
    rxyz = np.array([xmin,ymin,zmin,grid_size], dtype=np.float32)
    crd_cuda = cuda.to_device(crd)
    rxyz_cuda = cuda.to_device(rxyz)

    jit_time = 0
    gpu_time = 0

    for i in trange(100):
        grids = np.ones_like(crd)*(-1)
        time2 = time.time()
        grids_jit = grid_by_jit(crd, rxyz, atoms, grids)
        time3 = time.time()

        grids = np.ones_like(crd)*(-1)
        grids_cuda = cuda.to_device(grids)
        time4 = time.time()
        grid_by_gpu[(atoms,3),(1,1)](crd_cuda,
                                     rxyz_cuda,
                                     grids_cuda)
        time5 = time.time()

        if i != 0:
            jit_time += time3 - time2
            gpu_time += time5 - time4

    print ('The time cost of JIT calculation is: {}s'.format(jit_time))
    print ('The time cost of GPU calculation is: {}s'.format(gpu_time))

在这个5000000个原子的案例中,因为普通的for循环已经实在是跑不动了,因此我们就干脆不统计这一部分的时间,最后输出结果如下:

$ python3 cuda_grid.py
100%|███████████████████████████| 100/100 [00:09<00:00, 10.15it/s]
The time cost of JIT calculation is: 2.3743042945861816s
The time cost of GPU calculation is: 0.022843599319458008s

在如此大规模的运算下,GPU实现100倍的加速,而此时作为对比的CPU上的实现方法是已经用上了向量化运算的操作,也已经可以认为是一个极致的加速了。

总结概要

在这篇文章中,我们主要介绍了打格点算法在分子动力学模拟中的重要价值,以及几种不同的实现方式。其中最普通的for循环的实现效率比较低下,从算法复杂度上来讲却已经是极致。而基于CPU上的向量化运算的技术,可以对计算过程进行非常深度的优化。当然,这个案例在不同的硬件上也能够发挥出明显不同的加速效果,在GPU的加持之下,可以获得100倍以上的加速效果。这也是一个在Python上实现GPU加速算法的一个典型案例。

到此这篇关于Python3实现打格点算法的GPU加速的文章就介绍到这了,更多相关Python3实现打格点算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python3.0 实现决策树算法的流程

    决策树的一般流程 检测数据集中的每个子项是否属于同一个分类 if so return 类标签 Else 寻找划分数据集的最好特征 划分数据集 创建分支 节点 from math import log import operator #生成样本数据集 def createDataSet(): dataSet = [[1,1,'yes'], [1,1,'yes'], [1,0,'no'], [0,1,'no'], [0,1,'no']] labels = ['no surfacing','flipp

  • Python3爬楼梯算法示例

    本文实例讲述了Python3爬楼梯算法.分享给大家供大家参考,具体如下: 假设你正在爬楼梯.需要 n 步你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 方案一:每一步都是前两步和前一步的和 class Solution(object): def climbStairs(self, n): """ :type n: int :rtype: int """ pre, cur =

  • Python3实现的判断环形链表算法示例

    本文实例讲述了Python3实现的判断环形链表算法.分享给大家供大家参考,具体如下: 给定一个链表,判断链表中是否有环. 方案一:快慢指针遍历,若出现相等的情况,说明有环 # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def hasCycle(self,

  • Python3 A*寻路算法实现方式

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- import math import random import copy import time import sys import tkinter import threading # 地图 tm = [ '############################################################', '#S............................#........

  • Python3实现打格点算法的GPU加速实例详解

    目录 技术背景 打格点算法实现 打格点算法加速 总结概要 技术背景 在数学和物理学领域,总是充满了各种连续的函数模型.而当我们用现代计算机的技术去处理这些问题的时候,事实上是无法直接处理连续模型的,绝大多数的情况下都要转化成一个离散的模型再进行数值的计算.比如计算数值的积分,计算数值的二阶导数(海森矩阵)等等.这里我们所介绍的打格点的算法,正是一种典型的离散化方法.这个对空间做离散化的方法,可以在很大程度上简化运算量.比如在分子动力学模拟中,计算近邻表的时候,如果不采用打格点的方法,那么就要针对

  • Go Java算法之简化路径实例详解

    目录 简化路径 方法一:栈(Java) 方法二:标准库(Go) 简化路径 给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 '/' 开头),请你将其转化为更加简洁的规范路径. 在 Unix 风格的文件系统中,一个点(.)表示当前目录本身:此外,两个点 (..) 表示将目录切换到上一级(指向父目录):两者都可以是复杂相对路径的组成部分. 任意多个连续的斜杠(即,'//')都被视为单个斜杠 '/' . 对于此问题,任何其他格式的点(例如,'...')均被视为文件/

  • Python3.5 Pandas模块缺失值处理和层次索引实例详解

    本文实例讲述了Python3.5 Pandas模块缺失值处理和层次索引.分享给大家供大家参考,具体如下: 1.pandas缺失值处理 import numpy as np import pandas as pd from pandas import Series,DataFrame df3 = DataFrame([ ["Tom",np.nan,456.67,"M"], ["Merry",34,345.56,np.nan], [np.nan,np

  • Python3中的列表生成式、生成器与迭代器实例详解

    本文实例讲述了Python3中的列表生成式.生成器与迭代器.分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式.返回结果必须是列表. 基本语法: [ 变量表达式 for 变量 in 表达式 ] 示例 a = [x ** 2 for x in range(1, 10)] b = [x * x for x in range(1, 11) if x % 2 == 0] c = [m + n for m in 'ABC' for n in '123

  • Python3.5基础之函数的定义与使用实例详解【参数、作用域、递归、重载等】

    本文实例讲述了Python3.5函数的定义与使用.分享给大家供大家参考,具体如下: 1.函数学习框架 2.函数的定义与格式 (1)定义 (2)函数调用 注:函数名称不能以数字开头,建议函数名称的开头用小写的字母 (3)函数有四种格式,分别是:无参数无返回值,有参数无返回值.无参数有返回值.有参数有返回值 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu # 无参数无返回值 def hello(): # 函数体/

  • Java 蒙特卡洛算法求圆周率近似值实例详解

    起源 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,

  • Python机器学习k-近邻算法(K Nearest Neighbor)实例详解

    本文实例讲述了Python机器学习k-近邻算法.分享给大家供大家参考,具体如下: 工作原理 存在一份训练样本集,并且每个样本都有属于自己的标签,即我们知道每个样本集中所属于的类别.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后提取样本集中与之最相近的k个样本.观察并统计这k个样本的标签,选择数量最大的标签作为这个新数据的标签. 用以下这幅图可以很好的解释kNN算法: 不同形状的点,为不同标签的点.其中绿色点为未知标签的数据点.现在要对绿色点进行预测.由图不难得出

  • python目标检测SSD算法预测部分源码详解

    目录 学习前言 什么是SSD算法 ssd_vgg_300主体的源码 学习前言 ……学习了很多有关目标检测的概念呀,咕噜咕噜,可是要怎么才能进行预测呢,我看了好久的SSD源码,将其中的预测部分提取了出来,训练部分我还没看懂 什么是SSD算法 SSD是一种非常优秀的one-stage方法,one-stage算法就是目标检测和分类是同时完成的,其主要思路是均匀地在图片的不同位置进行密集抽样,抽样时可以采用不同尺度和长宽比,然后利用CNN提取特征后直接进行分类与回归,整个过程只需要一步,所以其优势是速度

  • python目标检测SSD算法训练部分源码详解

    目录 学习前言 讲解构架 模型训练的流程 1.设置参数 2.读取数据集 3.建立ssd网络. 4.预处理数据集 5.框的编码 6.计算loss值 7.训练模型并保存 开始训练 学习前言 ……又看了很久的SSD算法,今天讲解一下训练部分的代码.预测部分的代码可以参照https://blog.csdn.net/weixin_44791964/article/details/102496765 讲解构架 本次教程的讲解主要是对训练部分的代码进行讲解,该部分讲解主要是对训练函数的执行过程与执行思路进行详

  • Go Java算法之单词搜索示例详解

    目录 单词搜索 算法:DFS回溯(Java) 算法:DFS回溯(Go) 单词搜索 给定一个 m x n 二维字符网格 board 和一个字符串单词 word .如果 word 存在于网格中,返回 true :否则,返回 false . 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格.同一个单元格内的字母不允许被重复使用. 示例 1: 输入:board = [["A","B","C",&quo

随机推荐