C++求两数之和并返回下标详解

目录
  • 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。
  • ACM模式
  • 核心代码模式
    • 方法一:
      • 创建vector
      • 添加元素
      • 删除元素
      • 其他
    • 方法二:
      • auto的使用
      • unordered_map
      • 查找元素是否存在
      • 若有unordered_map <int, int> mp;查找x是否在map中
  • 总结:

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。

你可以假设每种输入只会对应一个答案。但是,数组中同一个元素在答案里不能重复出现。

你可以按任意顺序返回答案。

示例:

输入:nums = [2,7,11,15], target = 9

输出:[0,1]

解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] 。

ACM模式

#include <iostream>
#include <vector>
#include <unordered_map>
using namespace std;
int main(){
	vector<int> nums{ 2, 7, 11, 13 }; //原数组
	vector<int> vec; //存放结果
	int target = 18;
	unordered_map<int, int> ump;
	for (int i = 0; i < nums.size(); ++i){
		auto it = ump.find(target - nums[i]);
		if (it != ump.end()){
			vec.push_back(it->second); //将值插入vec中
			vec.push_back(i);
		}
		ump[nums[i]] = i; //键值对的存入
	}
	for (int i = 0; i < vec.size(); ++i){
		cout << vec[i] << endl;
	}
}

核心代码模式

方法一:

class Solution
{
public:
	vector<int> TwoSum(vector<int>&nums, int target)
	{
		int n = nums.size;
		for (int i = 0; i < n - 1; ++i)
		{
			for (int j = i + 1; j < n; ++j)
			{
				if (nums[i] + nums[j] == target)
					return{ i, j };
			}
		}
		return{};  //空的{}表示一个空的vector<int>
	}
};

使用vector需要添加头文件

#include <vector>
using namespace std;

创建vector

vector<int> nums; //不指定长度:
vector<int> nums(n); //指定长度为n:
vector<int> nums(10,1);//定义具有10个整型元素的向量,且给出的每个元素初值为1
                       //nums后面是括号()不是大括号{}

添加元素

直接从数组末端添加:

nums.push_back(1);

直接赋值给第i个位置:

nums[i] = 1;

删除元素

直接将数组长度减小,某种方式上删掉了后面i个:

nums.resize(nums.size-i);

删掉最后一个元素:

nums.pop_back();

其他

nums.size(); //获得长度
sort(nums.begin(),nums.end()); //排序(O(nlogn))
reverse(nums.begin(), nums.end()); //翻转
合并两个vector:合并nums1和nums2,并将合并后的数组赋值给nums
vector<int> nums1(m),nums2(n);
vector<int> nums;
nums.resize(m+n);
merge(nums1.begin(), nums1.end(),nums2.begin(),nums2.end(),nums);

方法二:

class Solution {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        unordered_map<int,int>hashtable;    // 建立哈希表
        for(int i=0;i<nums.size();++i){     //nums.size后面要带括号()
        // for(auto i:nums)  错误,因为只有知道i的类型才可以用auto
            auto it=hashtable.find(target-nums[i]); //返回类型是iterator迭代器
            if(it!=hashtable.end()){     // 查找it是否在hashtable里
                return{it->second,i};   //first是键(key),second是值(value)
                                        //hashtable[nums[i]]=i,first就是nums[i],second就是i
            }
            hashtable[nums[i]]=i;   //存入键值对。 hashtable(nums[i])=i;错误,是[]不是()
        }
        return{};
    }
};

auto的使用

C++11中引入的auto主要有两种用途:自动类型推断和返回值占位。

1.自动类型推断

auto a;                 错误,没有初始化表达式,无法推断出a的类型
auto int a = 10;        错误,auto临时变量的语义在C++11中已不存在, 这是旧标准的用法。
auto a = 10;
auto c = 'A';
auto s("hello");

2.返回值占位

auto v = compose(2, 3.14);    v 的类型是 double

unordered_map

unordered_map的头文件

#include <unordered_map>

创建unordered_map容器:

unordered_map<string,string>umap;
//创建好了一个可存储 <string,string> 类型键值对的 unordered_map 容器
unordered_map<int,int>umap;
//第一个int是键,第二个int是值

unordered_map容器的成员方法

begin()	//返回指向容器中第一个键值对的正向迭代器。
end() 	//返回指向容器中最后一个键值对之后位置的正向迭代器。
find(key)	//查找以 key 为键的键值对,如果找到,则返回一个指向该键值对的正向迭代器;反之,则返回一个指向容器中最后一个键值对之后位置的迭代器(如果 end() 方法返回的迭代器)。
cbegin()和 begin() //功能相同,只不过在其基础上增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
cend()和 end() //功能相同,只不过在其基础上,增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
empty()	//若容器为空,则返回 true;否则 false。
size()	//返回当前容器中存有键值对的个数。
max_size()	//返回容器所能容纳键值对的最大个数,不同的操作系统,其返回值亦不相同。
operator[key]	//该模板类中重载了 [] 运算符,其功能是可以向访问数组中元素那样,只要给定某个键值对的键 key,就可以获取该键对应的值。注意,如果当前容器中没有以 key 为键的键值对,则其会使用该键向当前容器中插入一个新键值对。
at(key)	//返回容器中存储的键 key 对应的值,如果 key 不存在,则会抛出 out_of_range 异常。
count(key)	//在容器中查找以 key 键的键值对的个数。
equal_range(key)	//返回一个 pair 对象,其包含 2 个迭代器,用于表明当前容器中键为 key 的键值对所在的范围。
emplace()	//向容器中添加新键值对,效率比 insert() 方法高。
emplace_hint()	//向容器中添加新键值对,效率比 insert() 方法高。
insert() 	//向容器中添加新键值对。
erase()	//删除指定键值对。
clear() 	//清空容器,即删除容器中存储的所有键值对。
swap()	//交换 2 个 unordered_map 容器存储的键值对,前提是必须保证这 2 个容器的类型完全相等。
bucket_count()	//返回当前容器底层存储键值对时,使用桶(一个线性链表代表一个桶)的数量。
max_bucket_count()	//返回当前系统中,unordered_map 容器底层最多可以使用多少桶。
bucket_size(n)	//返回第 n 个桶中存储键值对的数量。
bucket(key)	//返回以 key 为键的键值对所在桶的编号。
load_factor()	//返回 unordered_map 容器中当前的负载因子。负载因子,指的是的当前容器中存储键值对的数量(size())和使用桶数(bucket_count())的比值,即 load_factor() = size() / bucket_count()。
max_load_factor()	//返回或者设置当前 unordered_map 容器的负载因子。
rehash(n)	//将当前容器底层使用桶的数量设置为 n。
reserve()	//将存储桶的数量(也就是 bucket_count() 方法的返回值)设置为至少容纳count个元(不超过最大负载因子)所需的数量,并重新整理容器。
hash_function()	//返回当前容器使用的哈希函数对象。

查找元素是否存在

若有unordered_map <int, int> mp;查找x是否在map中

方法1:  若存在   mp.find(x) != mp.end()
方法2:  若存在   mp.count(x) != 0

c++中当定义类对象是指针对象时候,就需要用到 -> 指向类中的成员;
当定义一般对象时候时就需要用到 “.” 指向类中的成员。
例如:

class A
{  
    public play();
}

如果定义如下:

A *p则使用:p->play(); 左边是结构指针。

A p 则使用:p.paly(); 左边是结构变量。

总结:

箭头(->):左边必须为指针;

点号(.):左边必须为实体。

本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注我们的更多内容!

(0)

相关推荐

  • C++实现LeetCode(167.两数之和之二 - 输入数组有序)

    [LeetCode] 167.Two Sum II - Input array is sorted 两数之和之二 - 输入数组有序 Given an array of integers that is already sorted in ascending order, find two numbers such that they add up to a specific target number. The function twoSum should return indices of t

  • C++实现LeetCode(170.两数之和之三 - 数据结构设计)

    [LeetCode] 170. Two Sum III - Data structure design 两数之和之三 - 数据结构设计 Design and implement a TwoSum class. It should support the following operations: add and find. add - Add the number to an internal data structure. find - Find if there exists any pai

  • C++实现LeetCode(209.最短子数组之和)

    [LeetCode] 209. Minimum Size Subarray Sum 最短子数组之和 Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead. Example:  Input: s = 7, num

  • C++实现LeetCode(124.求二叉树的最大路径和)

    [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和 Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any sequence of nodes from some starting node to any node in the tree along the parent-child conn

  • C++实现LeetCode(211.添加和查找单词-数据结构设计)

    [LeetCode] 211.Add and Search Word - Data structure design 添加和查找单词-数据结构设计 Design a data structure that supports the following two operations: void addWord(word) bool search(word) search(word) can search a literal word or a regular expression string c

  • C++求两数之和并返回下标详解

    目录 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标. ACM模式 核心代码模式 方法一: 创建vector 添加元素 删除元素 其他 方法二: auto的使用 unordered_map 查找元素是否存在 若有unordered_map <int, int> mp;查找x是否在map中 类 总结: 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 tar

  • 利用Pandas求两个dataframe差集的过程详解

    目录 1.交集 2.差集(df1-df2为例) 总结 1.交集 intersected=pd.merge(df1,df2,how='inner') 延伸(针对列求交集)intersected=pd.merge(df1,df2,on['name'],how='inner') 2.差集(df1-df2为例) diff=pd.concat([df1,df2,df2]).drop_duplicates(keep=False) 差集函数的详解: 1.Pandas 通过 concat() 函数能够轻松地将

  • JS求解两数之和算法详解

    本文实例讲述了JS求解两数之和算法.分享给大家供大家参考,具体如下: 题目描述 给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. ::: tip 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回 [0, 1] ::: 解法 利用 Map 记录数组元素值和对应的下标,对于一个数 nums[i],判断 target - num

  • Java实现LeetCode(两数之和)

    给定一个整数数组和一个目标值,找出数组中和为目标值的两个数. 你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用. 示例: 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回[0, 1] 思路一:最直接的思维,两次遍历查询,时间复杂度O(N*N). 代码: public static int[] twoSum1(int[] nums, int target) { int[] label =

  • 使用python实现两数之和的画解算法

    题目描述 给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标. 你可以假设每种输入只会对应一个答案.但是,数组中同一个元素在答案里不能重复出现. 你可以按任意顺序返回答案. 示例 1: 输入:nums = [2,7,11,15], target = 9 输出:[0,1] 解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1] . 示例 2: 输入:nums = [3,2,4],

  • c语言如何实现两数之和

    目录 c语言实现两数之和 c语言中比较两数大小 题目要求 分析一下 c语言实现两数之和 int *twoSum(int *nums , int numsSize , int target , int *returnSize) { int i = 0 , j = 0; *returnSize = 2; int *a = (int *)malloc(sizeof(int) * 2); for(i = 0;i<numsSize;i++) { for(j=i+1;j<numsSize;j++) { i

  • Java 处理超大数类型之BigInteger案例详解

    一.BigInteger介绍 如果在操作的时候一个整型数据已经超过了整数的最大类型长度 long 的话,则此数据就无法装入,所以,此时要使用 BigInteger 类进行操作.这些大数都会以字符串的形式传入. BigInteger 相比 Integer 的确可以用 big 来形容.它是用于科学计算,Integer 只能容纳一个 int,所以,最大值也就是 2 的 31 次访减去 1,十进制为 2147483647.但是,如果需要计算更大的数,31 位显然是不够用的,那么,此时 BigIntege

  • Java 两种延时thread和timer详解及实例代码

    Java 两种延时thread和timer详解及实例代码 在Java中有时候需要使程序暂停一点时间,称为延时.普通延时用Thread.sleep(int)方法,这很简单.它将当前线程挂起指定的毫秒数.如 try { Thread.currentThread().sleep(1000);//毫秒 } catch(Exception e){} 在这里需要解释一下线程沉睡的时间.sleep()方法并不能够让程序"严格"的沉睡指定的时间.例如当使用5000作为sleep()方法的参数时,线 程

随机推荐