Python深度学习之Unet 语义分割模型(Keras)

目录
  • 前言
  • 一、什么是语义分割
  • 二、Unet
    • 1.基本原理
    • 2.mini_unet
    • 3. Mobilenet_unet
    • 4.数据加载部分
  • 参考

前言

最近由于在寻找方向上迷失自我,准备了解更多的计算机视觉任务重的模型。看到语义分割任务重Unet一个有意思的模型,我准备来复现一下它。

一、什么是语义分割

语义分割任务,如下图所示:

简而言之,语义分割任务就是将图片中的不同类别,用不同的颜色标记出来,每一个类别使用一种颜色。常用于医学图像,卫星图像任务。

那如何做到将像素点上色呢?

其实语义分割的输出和图像分类网络类似,图像分类类别数是一个一维的one hot 矩阵。例如:三分类的[0,1,0]。

语义分割任务最后的输出特征图 是一个三维结构,大小与原图类似,通道数就是类别数。 如下图(图片来源于知乎)所示:

其中通道数是类别数,每个通道所标记的像素点,是该类别在图像中的位置,最后通过argmax 取每个通道有用像素 合成一张图像,用不同颜色表示其类别位置。 语义分割任务其实也是分类任务中的一种,他不过是对每一个像素点进行细分,找到每一个像素点所述的类别。 这就是语义分割任务啦~

下面我们来复现 unet 模型

二、Unet

1.基本原理

什么是Unet,它的网络结构如下图所示:

整个网络是一个“U” 的形状,Unet 网络可以分成两部分,上图红色方框中是特征提取部分,和其他卷积神经网络一样,都是通过堆叠卷积提取图像特征,通过池化来压缩特征图。蓝色方框中为图像还原部分(这样称它可能不太专业,大家理解就好),通过上采样和卷积来来将压缩的图像进行还原。特征提取部分可以使用优秀的网络,例如:Resnet50,VGG等。

注意:由于 Resnet50和VGG 网络太大。本文将使用Mobilenet 作为主干特征提取网络。为了方便理解Unet,本文将使用自己搭建的一个mini_unet 去帮祝大家理解。为了方便计算,复现过程会把压缩后的特征图上采样和输入的特征图一样大小。

代码github地址: 一直上不去

先上传到码云:https://gitee.com/Boss-Jian/unet

2.mini_unet

mini_unet 是搭建来帮助大家理解语义分割的网络流程,并不能作为一个优秀的模型完成语义分割任务,来看一下代码的实现:

from keras.layers import Input,Conv2D,Dropout,MaxPooling2D,Concatenate,UpSampling2D
from numpy import pad
from keras.models import Model
def unet_mini(n_classes=21,input_shape=(224,224,3)):

    img_input = Input(shape=input_shape)

    #------------------------------------------------------
    # #encoder 部分
    #224,224,3 - > 112,112,32
    conv1 = Conv2D(32,(3,3),activation='relu',padding='same')(img_input)
    conv1 = Dropout(0.2)(conv1)
    conv1 = Conv2D(32,(3,3),activation='relu',padding='same')(conv1)
    pool1 = MaxPooling2D((2,2),strides=2)(conv1)

    #112,112,32 -> 56,56,64
    conv2 = Conv2D(64,(3,3),activation='relu',padding='same')(pool1)
    conv2 = Dropout(0.2)(conv2)
    conv2 = Conv2D(64,(3,3),activation='relu',padding='same')(conv2)
    pool2 = MaxPooling2D((2,2),strides=2)(conv2)

    #56,56,64 -> 56,56,128
    conv3 = Conv2D(128,(3,3),activation='relu',padding='same')(pool2)
    conv3 = Dropout(0.2)(conv3)
    conv3 = Conv2D(128,(3,3),activation='relu',padding='same')(conv3)

    #-------------------------------------------------
    # decoder 部分
    #56,56,128 -> 112,112,64
    up1 = UpSampling2D(2)(conv3)
    #112,112,64 -> 112,112,64+128
    up1 = Concatenate(axis=-1)([up1,conv2])
    #  #112,112,192 -> 112,112,64
    conv4  = Conv2D(64,(3,3),activation='relu',padding='same')(up1)
    conv4  = Dropout(0.2)(conv4)
    conv4  = Conv2D(64,(3,3),activation='relu',padding='same')(conv4)

    #112,112,64 - >224,224,64
    up2 = UpSampling2D(2)(conv4)
    #224,224,64 -> 224,224,64+32
    up2 = Concatenate(axis=-1)([up2,conv1])
    # 224,224,96 -> 224,224,32
    conv5 =  Conv2D(32,(3,3),activation='relu',padding='same')(up2)
    conv5  = Dropout(0.2)(conv5)
    conv5  = Conv2D(32,(3,3),activation='relu',padding='same')(conv5)

    o = Conv2D(n_classes,1,padding='same')(conv5)

    return Model(img_input,o,name="unet_mini")

if __name__=="__main__":
    model = unet_mini()
    model.summary()

mini_unet 通过encoder 部分将 224x224x3的图像 变成 112x112x64 的特征图,再通过 上采样方法将特征图放大到 224x224x32。最后通过卷积:

o = Conv2D(n_classes,1,padding='same')(conv5)

将特征图的通道数调节成和类别数一样。

3. Mobilenet_unet

Mobilenet_unet 是使用Mobinet 作为主干特征提取网络,并且加载预训练权重来提升特征提取的能力。decoder 的还原部分和上面一致,下面是Mobilenet_unet 的网络结构:

from keras.models import *
from keras.layers import *
import keras.backend as K
import keras
from tensorflow.python.keras.backend import shape

IMAGE_ORDERING =  "channels_last"# channel last
def relu6(x):
    return K.relu(x, max_value=6)

def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)):

    channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
    filters = int(filters * alpha)
    x = ZeroPadding2D(padding=(1, 1), name='conv1_pad',
                      data_format=IMAGE_ORDERING)(inputs)
    x = Conv2D(filters, kernel, data_format=IMAGE_ORDERING,
               padding='valid',
               use_bias=False,
               strides=strides,
               name='conv1')(x)
    x = BatchNormalization(axis=channel_axis, name='conv1_bn')(x)
    return Activation(relu6, name='conv1_relu')(x)

def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha,
                          depth_multiplier=1, strides=(1, 1), block_id=1):

    channel_axis = 1 if IMAGE_ORDERING == 'channels_first' else -1
    pointwise_conv_filters = int(pointwise_conv_filters * alpha)

    x = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING,
                      name='conv_pad_%d' % block_id)(inputs)
    x = DepthwiseConv2D((3, 3), data_format=IMAGE_ORDERING,
                        padding='valid',
                        depth_multiplier=depth_multiplier,
                        strides=strides,
                        use_bias=False,
                        name='conv_dw_%d' % block_id)(x)
    x = BatchNormalization(
        axis=channel_axis, name='conv_dw_%d_bn' % block_id)(x)
    x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x)

    x = Conv2D(pointwise_conv_filters, (1, 1), data_format=IMAGE_ORDERING,
               padding='same',
               use_bias=False,
               strides=(1, 1),
               name='conv_pw_%d' % block_id)(x)
    x = BatchNormalization(axis=channel_axis,
                           name='conv_pw_%d_bn' % block_id)(x)
    return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x)

def get_mobilnet_eocoder(input_shape=(224,224,3),weights_path=""):

    # 必须是32 的倍数
    assert input_shape[0] % 32 == 0
    assert input_shape[1] % 32 == 0

    alpha = 1.0
    depth_multiplier = 1

    img_input = Input(shape=input_shape)
    #(None, 224, 224, 3) ->(None, 112, 112, 64)
    x = _conv_block(img_input, 32, alpha, strides=(2, 2))
    x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1)
    f1 = x

    #(None, 112, 112, 64) -> (None, 56, 56, 128)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier,
                              strides=(2, 2), block_id=2)
    x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3)
    f2 = x
   #(None, 56, 56, 128) -> (None, 28, 28, 256)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier,
                              strides=(2, 2), block_id=4)
    x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5)
    f3 = x
    # (None, 28, 28, 256) ->  (None, 14, 14, 512)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier,
                              strides=(2, 2), block_id=6)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10)
    x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11)
    f4 = x
    # (None, 14, 14, 512) -> (None, 7, 7, 1024)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier,
                              strides=(2, 2), block_id=12)
    x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13)
    f5 = x
    # 加载预训练模型
    if weights_path!="":
        Model(img_input, x).load_weights(weights_path, by_name=True, skip_mismatch=True)
    # f1: (None, 112, 112, 64)
    # f2: (None, 56, 56, 128)
    # f3: (None, 28, 28, 256)
    # f4: (None, 14, 14, 512)
    # f5: (None, 7, 7, 1024)
    return img_input, [f1, f2, f3, f4, f5]

def mobilenet_unet(num_classes=2,input_shape=(224,224,3)):

    #encoder
    img_input,levels = get_mobilnet_eocoder(input_shape=input_shape,weights_path="model_data\mobilenet_1_0_224_tf_no_top.h5")

    [f1, f2, f3, f4, f5] = levels

    # f1: (None, 112, 112, 64)
    # f2: (None, 56, 56, 128)
    # f3: (None, 28, 28, 256)
    # f4: (None, 14, 14, 512)
    # f5: (None, 7, 7, 1024)

    #decoder
    #(None, 14, 14, 512) - > (None, 14, 14, 512)
    o = f4
    o = ZeroPadding2D()(o)
    o = Conv2D(512, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)

    #(None, 14, 14, 512) ->(None,28,28,256)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f3])
    o = ZeroPadding2D()(o)
    o = Conv2D(256, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    # None,28,28,256)->(None,56,56,128)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f2])
    o = ZeroPadding2D()(o)
    o = Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    #(None,56,56,128) ->(None,112,112,64)
    o = UpSampling2D(2)(o)
    o = Concatenate(axis=-1)([o,f1])
    o = ZeroPadding2D()(o)
    o = Conv2D(128, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)
    #(None,112,112,64) -> (None,112,112,num_classes)

    # 再上采样 让输入和出处图片大小一致
    o = UpSampling2D(2)(o)
    o = ZeroPadding2D()(o)
    o = Conv2D(64, (3, 3), padding='valid' , activation='relu' , data_format=IMAGE_ORDERING)(o)
    o = BatchNormalization()(o)

    o = Conv2D(num_classes, (3, 3), padding='same',
               data_format=IMAGE_ORDERING)(o)

    return Model(img_input,o)

if __name__=="__main__":
    mobilenet_unet(input_shape=(512,512,3)).summary()

特征图的大小变化,以及代码含义都已经注释在代码里了。大家仔细阅读吧

4.数据加载部分

import math
import os
from random import shuffle

import cv2
import keras
import numpy as np
from PIL import Image
#-------------------------------
# 将图片转换为 rgb
#------------------------------
def cvtColor(image):
    if len(np.shape(image)) == 3 and np.shape(image)[2] == 3:
        return image
    else:
        image = image.convert('RGB')
        return image
#-------------------------------
# 图片归一化 0~1
#------------------------------
def preprocess_input(image):
    image = image / 127.5 - 1
    return image
#---------------------------------------------------
#   对输入图像进行resize
#---------------------------------------------------
def resize_image(image, size):
    iw, ih  = image.size
    w, h    = size

    scale   = min(w/iw, h/ih)
    nw      = int(iw*scale)
    nh      = int(ih*scale)

    image   = image.resize((nw,nh), Image.BICUBIC)
    new_image = Image.new('RGB', size, (128,128,128))
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))

    return new_image, nw, nh

class UnetDataset(keras.utils.Sequence):
    def __init__(self, annotation_lines, input_shape, batch_size, num_classes, train, dataset_path):
        self.annotation_lines   = annotation_lines
        self.length             = len(self.annotation_lines)
        self.input_shape        = input_shape
        self.batch_size         = batch_size
        self.num_classes        = num_classes
        self.train              = train
        self.dataset_path       = dataset_path

    def __len__(self):
        return math.ceil(len(self.annotation_lines) / float(self.batch_size))

    def __getitem__(self, index):
        #图片和标签、
        images  = []
        targets = []
        # 读取一个batchsize
        for i in range(index*self.batch_size,(index+1)*self.batch_size):
            #判断 i 越界情况
            i = i%self.length
            name = self.annotation_lines[i].split()[0]
            # 从路径中读取图像 jpg 表示图片,png 表示标签
            jpg = Image.open(os.path.join(os.path.join(self.dataset_path,'Images'),name+'.png'))
            png = Image.open(os.path.join(os.path.join(self.dataset_path,'Labels'),name+'.png'))

            #-------------------
            # 数据增强  和 归一化
            #-------------------
            jpg,png = self.get_random_data(jpg,png,self.input_shape,random=self.train)
            jpg = preprocess_input(np.array(jpg,np.float64))
            png = np.array(png)

            #-----------------------------------
            # 医学图像中 描绘出的是细胞边缘
            #  将小于 127.5的像素点 作为目标 像素点
            #------------------------------------

            seg_labels = np.zeros_like(png)
            seg_labels[png<=127.5] = 1
            #--------------------------------
            # 转化为 one hot 标签
            # -------------------------
            seg_labels  = np.eye(self.num_classes + 1)[seg_labels.reshape([-1])]
            seg_labels  = seg_labels.reshape((int(self.input_shape[0]), int(self.input_shape[1]), self.num_classes + 1))

            images.append(jpg)
            targets.append(seg_labels)

        images  = np.array(images)
        targets = np.array(targets)
        return images, targets

    def rand(self, a=0, b=1):
        return np.random.rand() * (b - a) + a

    def get_random_data(self, image, label, input_shape, jitter=.3, hue=.1, sat=1.5, val=1.5, random=True):
        image = cvtColor(image)
        label = Image.fromarray(np.array(label))
        h, w = input_shape

        if not random:
            iw, ih  = image.size
            scale   = min(w/iw, h/ih)
            nw      = int(iw*scale)
            nh      = int(ih*scale)

            image       = image.resize((nw,nh), Image.BICUBIC)
            new_image   = Image.new('RGB', [w, h], (128,128,128))
            new_image.paste(image, ((w-nw)//2, (h-nh)//2))

            label       = label.resize((nw,nh), Image.NEAREST)
            new_label   = Image.new('L', [w, h], (0))
            new_label.paste(label, ((w-nw)//2, (h-nh)//2))
            return new_image, new_label

        # resize image
        rand_jit1 = self.rand(1-jitter,1+jitter)
        rand_jit2 = self.rand(1-jitter,1+jitter)
        new_ar = w/h * rand_jit1/rand_jit2

        scale = self.rand(0.25, 2)
        if new_ar < 1:
            nh = int(scale*h)
            nw = int(nh*new_ar)
        else:
            nw = int(scale*w)
            nh = int(nw/new_ar)

        image = image.resize((nw,nh), Image.BICUBIC)
        label = label.resize((nw,nh), Image.NEAREST)

        flip = self.rand()<.5
        if flip:
            image = image.transpose(Image.FLIP_LEFT_RIGHT)
            label = label.transpose(Image.FLIP_LEFT_RIGHT)

        # place image
        dx = int(self.rand(0, w-nw))
        dy = int(self.rand(0, h-nh))
        new_image = Image.new('RGB', (w,h), (128,128,128))
        new_label = Image.new('L', (w,h), (0))
        new_image.paste(image, (dx, dy))
        new_label.paste(label, (dx, dy))
        image = new_image
        label = new_label

        # distort image
        hue = self.rand(-hue, hue)
        sat = self.rand(1, sat) if self.rand()<.5 else 1/self.rand(1, sat)
        val = self.rand(1, val) if self.rand()<.5 else 1/self.rand(1, val)
        x = cv2.cvtColor(np.array(image,np.float32)/255, cv2.COLOR_RGB2HSV)
        x[..., 0] += hue*360
        x[..., 0][x[..., 0]>1] -= 1
        x[..., 0][x[..., 0]<0] += 1
        x[..., 1] *= sat
        x[..., 2] *= val
        x[x[:,:, 0]>360, 0] = 360
        x[:, :, 1:][x[:, :, 1:]>1] = 1
        x[x<0] = 0
        image_data = cv2.cvtColor(x, cv2.COLOR_HSV2RGB)*255
        return image_data,label

    def on_epoch_begin(self):
        shuffle(self.annotation_lines)

训练过程代码:

import numpy as np
from  tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard
from keras.optimizers import Adam
import os
from unet_mini import unet_mini
from mobilnet_unet import mobilenet_unet
from callbacks import ExponentDecayScheduler,LossHistory
from keras import backend as K
from keras import backend
from data_loader import UnetDataset
#--------------------------------------
# 交叉熵损失函数 cls_weights 类别的权重
#-------------------------------------
def CE(cls_weights):
    cls_weights = np.reshape(cls_weights, [1, 1, 1, -1])
    def _CE(y_true, y_pred):
        y_pred = K.clip(y_pred, K.epsilon(), 1.0 - K.epsilon())

        CE_loss = - y_true[...,:-1] * K.log(y_pred) * cls_weights
        CE_loss = K.mean(K.sum(CE_loss, axis = -1))
        # dice_loss = tf.Print(CE_loss, [CE_loss])
        return CE_loss
    return _CE
def f_score(beta=1, smooth = 1e-5, threhold = 0.5):
    def _f_score(y_true, y_pred):
        y_pred = backend.greater(y_pred, threhold)
        y_pred = backend.cast(y_pred, backend.floatx())

        tp = backend.sum(y_true[...,:-1] * y_pred, axis=[0,1,2])
        fp = backend.sum(y_pred         , axis=[0,1,2]) - tp
        fn = backend.sum(y_true[...,:-1], axis=[0,1,2]) - tp

        score = ((1 + beta ** 2) * tp + smooth) \
                / ((1 + beta ** 2) * tp + beta ** 2 * fn + fp + smooth)
        return score
    return _f_score

def train():
    #-------------------------
    # 细胞图像 分为细胞壁 和其他
    # 初始化 参数
    #-------------------------
    num_classes  = 2 

    input_shape = (512,512,3)
    # 从第几个epoch 继续训练

    batch_size = 4

    learn_rate  = 1e-4

    start_epoch = 0
    end_epoch = 100
    num_workers = 4

    dataset_path = 'Medical_Datasets'

    model = mobilenet_unet(num_classes,input_shape=input_shape)

    model.summary()

    # 读取数据图片的路劲
    with open(os.path.join(dataset_path, "ImageSets/Segmentation/train.txt"),"r") as f:
        train_lines = f.readlines()

    logging         = TensorBoard(log_dir = 'logs/')
    checkpoint      = ModelCheckpoint('logs/ep{epoch:03d}-loss{loss:.3f}.h5',
                        monitor = 'loss', save_weights_only = True, save_best_only = False, period = 1)
    reduce_lr       = ExponentDecayScheduler(decay_rate = 0.96, verbose = 1)
    early_stopping  = EarlyStopping(monitor='loss', min_delta=0, patience=10, verbose=1)
    loss_history    = LossHistory('logs/', val_loss_flag = False)

    epoch_step      = len(train_lines) // batch_size
    cls_weights     = np.ones([num_classes], np.float32)
    loss = CE(cls_weights)
    model.compile(loss = loss,
                optimizer = Adam(lr=learn_rate),
                metrics = [f_score()])

    train_dataloader    = UnetDataset(train_lines, input_shape[:2], batch_size, num_classes, True, dataset_path)

    print('Train on {} samples, with batch size {}.'.format(len(train_lines), batch_size))
    model.fit_generator(
            generator           = train_dataloader,
            steps_per_epoch     = epoch_step,
            epochs              = end_epoch,
            initial_epoch       = start_epoch,
            # use_multiprocessing = True if num_workers > 1 else False,
            workers             = num_workers,
            callbacks           = [logging, checkpoint, early_stopping,reduce_lr,loss_history]
        )

if __name__=="__main__":
    train()

最后的预测结果:

完整的代大家感兴趣可以去github下载下来再看,代码比较多,全部贴出来博客显得太长了。

这就是简单的语义分割任务啦。

参考

https://github.com/bubbliiiing/unet-keras

https://github.com/divamgupta/image-segmentation-keras 

以上就是Python深度学习之Unet 语义分割模型(Keras)的详细内容,更多关于Python Unet 语义分割模型的资料请关注我们其它相关文章!

(0)

相关推荐

  • python深度学习TensorFlow神经网络模型的保存和读取

    目录 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给出了保存TensorFlow模型的方法: import tensorflow as tf # 声明两个变量

  • Python Pytorch深度学习之神经网络

    目录 一.简介 二.神经网络训练过程 2.通过调用net.parameters()返回模型可训练的参数 3.迭代整个输入 4.调用反向传播 5.计算损失值 6.反向传播梯度 7.更新神经网络参数 总结 一.简介 神经网络可以通过torch.nn包构建,上一节已经对自动梯度有些了解,神经网络是基于自动梯度来定义一些模型.一个nn.Module包括层和一个方法,它会返回输出.例如:数字图片识别的网络: 上图是一个简单的前回馈神经网络,它接收输入,让输入一个接着一个通过一些层,最后给出输出. 二.神经

  • python 使用递归的方式实现语义图片分割功能

    实现效果 第一张图为原图,其余的图为分割后的图形 代码实现: # -*-coding:utf-8-*- import numpy as np import cv2 #---------------------------------------------------------------------- def obj_clip(img, foreground, border): result = [] height ,width = np.shape(img) visited = set()

  • Python深度强化学习之DQN算法原理详解

    目录 1 DQN算法简介 2 DQN算法原理 2.1 经验回放 2.2 目标网络 3 DQN算法伪代码 DQN算法是DeepMind团队提出的一种深度强化学习算法,在许多电动游戏中达到人类玩家甚至超越人类玩家的水准,本文就带领大家了解一下这个算法,论文的链接见下方. 论文:Human-level control through deep reinforcement learning | Nature 代码:后续会将代码上传到Github上... 1 DQN算法简介 Q-learning算法采用一

  • Python深度学习神经网络基本原理

    目录 神经网络 梯度下降法 神经网络 梯度下降法 在详细了解梯度下降的算法之前,我们先看看相关的一些概念. 1. 步长(Learning rate):步长决定了在梯度下降迭代的过程中,每一步沿梯度负方向前进的长度.用上面下山的例子,步长就是在当前这一步所在位置沿着最陡峭最易下山的位置走的那一步的长度. 2.特征(feature):指的是样本中输入部分,比如2个单特征的样本(x(0),y(0)),(x(1),y(1))(x(0),y(0)),(x(1),y(1)),则第一个样本特征为x(0)x(0

  • Python深度学习之Unet 语义分割模型(Keras)

    目录 前言 一.什么是语义分割 二.Unet 1.基本原理 2.mini_unet 3. Mobilenet_unet 4.数据加载部分 参考 前言 最近由于在寻找方向上迷失自我,准备了解更多的计算机视觉任务重的模型.看到语义分割任务重Unet一个有意思的模型,我准备来复现一下它. 一.什么是语义分割 语义分割任务,如下图所示: 简而言之,语义分割任务就是将图片中的不同类别,用不同的颜色标记出来,每一个类别使用一种颜色.常用于医学图像,卫星图像任务. 那如何做到将像素点上色呢? 其实语义分割的输

  • python深度学习tensorflow训练好的模型进行图像分类

    目录 正文 随机找一张图片 读取图片进行分类识别 最后输出 正文 谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类. 下载链接: https://pan.baidu.com/s/1XGfwYer5pIEDkpM3nM6o2A 提取码: hu66 下载完解压后,得到几个文件: 其中 classify_image_graph_def.pb 文件就是训练好的Inception-v3模型. imagenet_synset_to_huma

  • Python深度学习之Keras模型转换成ONNX模型流程详解

    目录 从Keras转换成PB模型 从PB模型转换成ONNX模型 改变现有的ONNX模型精度 部署ONNX 模型 总结 从Keras转换成PB模型 请注意,如果直接使用Keras2ONNX进行模型转换大概率会出现报错,这里笔者曾经进行过不同的尝试,最后都失败了. 所以笔者的推荐的情况是:首先将Keras模型转换为TensorFlow PB模型. 那么通过tf.keras.models.load_model()这个函数将模型进行加载,前提是你有一个基于h5格式或者hdf5格式的模型文件,最后再通过改

  • Python深度学习albumentations数据增强库

    数据增强的必要性 深度学习在最近十年得以风靡得益于计算机算力的提高以及数据资源获取的难度下降.一个好的深度模型往往需要大量具有label的数据,使得模型能够很好的学习这种数据的分布.而给数据打标签往往是一件耗时耗力的工作. 拿cv里的经典任务为例,classification需要人准确识别物品类别或者生物种类,object detection需要人工画出bounding box, 确定其坐标,semantic segmentation甚至需要在像素级别进行标签标注.对于一些专业领域的图像标注,依

  • 13个最常用的Python深度学习库介绍

    如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助. 在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库. 这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表. 这其中的一些库我比别人用的多很多,尤其是Keras.mxnet和sklearn-theano. 其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras.deepy和Blocks等). 另外的我只

  • python 深度学习中的4种激活函数

    这篇文章用来整理一下入门深度学习过程中接触到的四种激活函数,下面会从公式.代码以及图像三个方面介绍这几种激活函数,首先来明确一下是哪四种: Sigmoid函数 Tahn函数 ReLu函数 SoftMax函数 激活函数的作用 下面图像A是一个线性可分问题,也就是说对于两类点(蓝点和绿点),你通过一条直线就可以实现完全分类. 当然图像A是最理想.也是最简单的一种二分类问题,但是现实中往往存在一些非常复杂的线性不可分问题,比如图像B,你是找不到任何一条直线可以将图像B中蓝点和绿点完全分开的,你必须圈出

  • Python深度学习之图像标签标注软件labelme详解

    前言 labelme是一个非常好用的免费的标注软件,博主看了很多其他的博客,有的直接是翻译稿,有的不全面.对于新手入门还是有点困难.因此,本文的主要是详细介绍labelme该如何使用. 一.labelme是什么? labelme是图形图像注释工具,它是用Python编写的,并将Qt用于其图形界面.说直白点,它是有界面的, 像软件一样,可以交互,但是它又是由命令行启动的,比软件的使用稍微麻烦点.其界面如下图: 它的功能很多,包括: 对图像进行多边形,矩形,圆形,多段线,线段,点形式的标注(可用于目

  • Python深度学习之简单实现猫狗图像分类

    一.前言 本文使用的是 kaggle 猫狗大战的数据集 训练集中有 25000 张图像,测试集中有 12500 张图像.作为简单示例,我们用不了那么多图像,随便抽取一小部分猫狗图像到一个文件夹里即可. 通过使用更大.更复杂的模型,可以获得更高的准确率,预训练模型是一个很好的选择,我们可以直接使用预训练模型来完成分类任务,因为预训练模型通常已经在大型的数据集上进行过训练,通常用于完成大型的图像分类任务. tf.keras.applications中有一些预定义好的经典卷积神经网络结构(Applic

  • Python深度学习之实现卷积神经网络

    一.卷积神经网络 Yann LeCun 和Yoshua Bengio在1995年引入了卷积神经网络,也称为卷积网络或CNN.CNN是一种特殊的多层神经网络,用于处理具有明显网格状拓扑的数据.其网络的基础基于称为卷积的数学运算. 卷积神经网络(CNN)的类型 以下是一些不同类型的CNN: 1D CNN:1D CNN 的输入和输出数据是二维的.一维CNN大多用于时间序列. 2D CNNN:2D CNN的输入和输出数据是三维的.我们通常将其用于图像数据问题. 3D CNNN:3D CNN的输入和输出数

  • Python深度学习pyTorch权重衰减与L2范数正则化解析

    下面进行一个高维线性实验 假设我们的真实方程是: 假设feature数200,训练样本和测试样本各20个 模拟数据集 num_train,num_test = 10,10 num_features = 200 true_w = torch.ones((num_features,1),dtype=torch.float32) * 0.01 true_b = torch.tensor(0.5) samples = torch.normal(0,1,(num_train+num_test,num_fe

随机推荐