浅谈pytorch卷积核大小的设置对全连接神经元的影响

3*3卷积核与2*5卷积核对神经元大小的设置

#这里kerner_size = 2*5
class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类
 def __init__(self):
  super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性
  # super()需要两个实参,子类名和对象self
  self.conv1 = nn.Conv2d(1, 32, (2, 5), 1, padding=0)
  self.conv2 = nn.Conv2d(32, 128, 1, 1, padding=0)
  self.fc1 = nn.Linear(512, 128)
  self.relu1 = nn.ReLU(inplace=True)
  self.drop1 = nn.Dropout(0.5)
  self.fc2 = nn.Linear(128, 32)
  self.relu2 = nn.ReLU(inplace=True)
  self.fc3 = nn.Linear(32, 3)
  self.softmax = nn.Softmax(dim=1)

 def forward(self, x):
  x = self.conv1(x)
  x = self.conv2(x)
  x = x.view(x.size(0), -1)
  x = self.fc1(x)
  x = self.relu1(x)
  x = self.drop1(x)
  x = self.fc2(x)
  x = self.relu2(x)
  x = self.fc3(x)
  x = self.softmax(x)
  return x

主要看对称卷积核以及非对称卷积核之间的计算方式

#这里kerner_size = 3*3
class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类
 def __init__(self):
  super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性
  # super()需要两个实参,子类名和对象self
  self.conv1 = nn.Conv2d(1, 32, 3, 1, padding=1)
  self.conv2 = nn.Conv2d(32, 128, 1, 1, padding=0)
  self.fc1 = nn.Linear(3200, 128)
  self.relu1 = nn.ReLU(inplace=True)
  self.drop1 = nn.Dropout(0.5)
  self.fc2 = nn.Linear(128, 32)
  self.relu2 = nn.ReLU(inplace=True)
  self.fc3 = nn.Linear(32, 3)
  self.softmax = nn.Softmax(dim=1)

 def forward(self, x):
  x = self.conv1(x)
  x = self.conv2(x)
  x = x.view(x.size(0), -1)
  x = self.fc1(x)
  x = self.relu1(x)
  x = self.drop1(x)
  x = self.fc2(x)
  x = self.relu2(x)
  x = self.fc3(x)
  x = self.softmax(x)
  return x

针对kerner_size=2*5,padding=0,stride=1以及kerner_size=3*3,padding=1,stride=1二者计算方式的比较如图所示

以上这篇浅谈pytorch卷积核大小的设置对全连接神经元的影响就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch上实现卷积神经网络CNN的方法

    一.卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等.CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程.在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在

  • Pytorch中膨胀卷积的用法详解

    卷积和膨胀卷积 在深度学习中,我们会碰到卷积的概念,我们知道卷积简单来理解就是累乘和累加,普通的卷积我们在此不做赘述,大家可以翻看相关书籍很好的理解. 最近在做项目过程中,碰到Pytorch中使用膨胀卷积的情况,想要的输入输出是图像经过四层膨胀卷积后图像的宽高尺寸不发生变化. 开始我的思路是padding='SAME'结合strides=1来实现输入输出尺寸不变,试列好多次还是有问题,报了张量错误的提示,想了好久也没找到解决方法,上网搜了下,有些人的博客说经过膨胀卷积之后图像的尺寸不发生变化,有

  • pytorch神经网络之卷积层与全连接层参数的设置方法

    当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错. 后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个. 全连接层的input_features是多少.首先来看一下这个简单的网络.这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢? 请看下文详解. class AlexN

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.

  • Pytorch之卷积层的使用详解

    1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu

  • 浅谈pytorch卷积核大小的设置对全连接神经元的影响

    3*3卷积核与2*5卷积核对神经元大小的设置 #这里kerner_size = 2*5 class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类 def __init__(self): super(CONV_NET, self).__init__() #使CONV_NET类包含父类nn.Module的所有属性 # super()需要两个实参,子类名和对象self self.conv1 = nn.Conv2d(1, 32, (2, 5), 1,

  • 浅谈pytorch torch.backends.cudnn设置作用

    cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用 如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法 然后再设置: torch.backends.cudnn.benchmark = true 那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题 一般来讲,应该遵循以下准则: 如果网络的输入数据维度或类型上变化不大,设置 

  • 浅谈pytorch中torch.max和F.softmax函数的维度解释

    在利用torch.max函数和F.Ssoftmax函数时,对应该设置什么维度,总是有点懵,遂总结一下: 首先看看二维tensor的函数的例子: import torch import torch.nn.functional as F input = torch.randn(3,4) print(input) tensor([[-0.5526, -0.0194, 2.1469, -0.2567], [-0.3337, -0.9229, 0.0376, -0.0801], [ 1.4721, 0.1

  • 浅谈pc端rem字体设置的问题

    1.内容在一屏内显示的,采用了(内容框)上下左右居中的办法,里面的内容绝对于这个内容框定位.这样一来,在不同大小屏中,内容总是在中间,看起来较正常 2.长,宽,LEFT,TOP,RIGHT,BOTTOM都采用了REM,并且HTML的FONT-SIZE设置的是100PX一是觉得计算方便,二是如果设为10PX,谷歌会不兼容.此时BODY的FONT-SIZE设置为正常值,12PX.不然的话,其它的DOM都会继承HTML的100PX的FONT-SIZE,导致效果巨大. 3.当浏览器窗口变化时,内容的大小

  • 浅谈Pytorch中的torch.gather函数的含义

    pytorch中的gather函数 pytorch比tensorflow更加编程友好,所以准备用pytorch试着做最近要做的一些实验. 立个flag开始学习pytorch,新开一个分类整理学习pytorch中的一些踩到的泥坑. 今天刚开始接触,读了一下documentation,写一个一开始每太搞懂的函数gather b = torch.Tensor([[1,2,3],[4,5,6]]) print b index_1 = torch.LongTensor([[0,1],[2,0]]) ind

  • 浅谈pytorch grad_fn以及权重梯度不更新的问题

    前提:我训练的是二分类网络,使用语言为pytorch Varibale包含三个属性: data:存储了Tensor,是本体的数据 grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致 grad_fn:指向Function对象,用于反向传播的梯度计算之用 在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量. 百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下: train_pred = Variable(tr

  • 浅谈PyTorch的可重复性问题(如何使实验结果可复现)

    由于在模型训练的过程中存在大量的随机操作,使得对于同一份代码,重复运行后得到的结果不一致.因此,为了得到可重复的实验结果,我们需要对随机数生成器设置一个固定的种子. 许多博客都有介绍如何解决这个问题,但是很多都不够全面,往往不能保证结果精确一致.我经过许多调研和实验,总结了以下方法,记录下来. 全部设置可以分为三部分: 1. CUDNN cudnn中对卷积操作进行了优化,牺牲了精度来换取计算效率.如果需要保证可重复性,可以使用如下设置: from torch.backends import cu

  • 浅谈pytorch 模型 .pt, .pth, .pkl的区别及模型保存方式

    我们经常会看到后缀名为.pt, .pth, .pkl的pytorch模型文件,这几种模型文件在格式上有什么区别吗? 其实它们并不是在格式上有区别,只是后缀不同而已(仅此而已),在用torch.save()函数保存模型文件时,各人有不同的喜好,有些人喜欢用.pt后缀,有些人喜欢用.pth或.pkl.用相同的torch.save()语句保存出来的模型文件没有什么不同. 在pytorch官方的文档/代码里,有用.pt的,也有用.pth的.一般惯例是使用.pth,但是官方文档里貌似.pt更多,而且官方也

  • 浅谈pytorch中的BN层的注意事项

    最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数. model.train() or model.eval() BN类的定义见pytorch中文参考文档 补充知识:关于pyto

  • 浅谈redis的过期时间设置和过期删除机制

    目录 一:设置过期时间 二:保存过期时间 三:移除过期时间 四:计算并返回剩余生存时间 五:过期键的删除策略 六:redis使用的策略 一:设置过期时间 redis有四种命令可以用于设置键的生存时间和过期时间: EXPIRE <KEY> <TTL> : 将键的生存时间设为 ttl 秒 PEXPIRE <KEY> <TTL> :将键的生存时间设为 ttl 毫秒 EXPIREAT <KEY> <timestamp> :将键的过期时间设为

随机推荐