使用R语言绘制棒棒糖图火柴杆图教程

目录
  • 使用原生ggplot方法
    • 1)生成数据
  • 使用ggpubr包中的ggdotchart()
  • 参考

使用原生ggplot方法

最容易也是最简单想到的方法是直接使用ggplot2包进行更新,这里需要使用ggplot本身的特性,通过图层叠加的方式,进行最终棒棒糖图的展现。(宽度极窄的柱状图配合散点图即可呈现)

1)生成数据

下面我们的展示均以此份数据为例:

library(ggplot2)

# Load data
data("mtcars")
dfm <- mtcars
# Convert the cyl variable to a factor
dfm$cyl <- as.factor(dfm$cyl)
# Add the name colums
dfm$name <- rownames(dfm)

# Calculate the z-score of the mpg data
dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"),
                      levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])

2)绘制棒棒糖图

ggplot(dfm, aes(x = name, y = mpg)) +
  geom_hline(yintercept = 0, color = "grey", size = 1) + # 添加y=0的辅助线
  geom_point(aes(color = cyl), size = 2) +         # 将点的size设置大一些比较好看
  geom_bar(aes(fill = cyl), stat = "identity", width = 0.2) + # 注意将width宽度设小
  theme_bw(base_family = "Times") +
  theme(panel.grid.minor = element_blank(),
        panel.grid.major.x = element_blank(),      # 消除竖条的背景线
        axis.text.x = element_text(angle = 90),
        legend.position = "None",
        panel.border = element_blank(),
        # text = element_text(family = "STHeiti"), # Mac 电脑上绘图展现中文需要此行命令
        plot.title = element_text(hjust = 0.5)) +  # 标题居中,若无标题可不加
  labs(x = "name", y = "mpg",
       colour = "", linetype = "", fill = "")

结果如下:

下面我们介绍一种更简便且高级的棒棒糖图绘制方法:使用ggpubr包中的ggdotchart()函数。

使用ggpubr包中的ggdotchart()

这里我们直接看官方介绍的几个例子,来理解函数的使用方式,首先载入依赖包:

library(ggpubr)

1)

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "ascending",                        # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           ggtheme = theme_pubr()                        # ggplot2 theme
)

2)

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",
           palette = c("#00AFBB", "#E7B800", "#FC4E07"),
           sorting = "asc", sort.by.groups = TRUE,
           add = "segments",
           add.params = list(color = "lightgray", size = 2),
           group = "cyl",
           dot.size = 4,
           ggtheme = theme_pubclean()
) + font("x.text", size = 8, vjust = 0.5)

3)

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           rotate = TRUE,                                # Rotate vertically
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9,
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
)

4)

ggdotchart(dfm, x = "name", y = "mpg_z",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           add.params = list(color = "lightgray", size = 2), # Change segment color and size
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg_z,1),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9,
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
) + geom_hline(yintercept = 0, linetype = 2, color = "lightgray")

参考

Articles - ggpubr: Publication Ready Plots

Articles - R Graphics Essentials

ggpubr: ‘ggplot2' Based Publication Ready Plots

以上就是使用R语言绘制棒棒糖图火柴杆图教程的详细内容,更多关于R语言绘制棒棒糖图火柴杆图的资料请关注我们其它相关文章!

(0)

相关推荐

  • R语言绘制Vonoroi图

    deldir包绘制Voronoi图 #install.packages("deldir") library(deldir) # data set.seed(1) x <- runif(60) y <- runif(60) # Calculate Voronoi Tesselation and tiles tesselation <- deldir(x, y) tiles <- tile.list(tesselation) plot(tiles, pch = 19

  • R语言基础画图实例讲解

    1.plot函数 plot(x,y,xlim=c(0,100),ylim=c(0.4,1), type="o",lwd=2,col=2,pch=24,cex=1.5, yaxs="i",xaxs="i", xlab="Sample Ration(%)",ylab="Accuracy") x,y : 要画图的x轴内容和y轴内容 xlim,ylim: x轴和y轴的范围 type: 表示图的形状,是点.线.点线.

  • R语言绘制直方图实例讲解

    直方图表示被存储到范围中的变量的值的频率. 直方图类似于条形图,但不同之处在于将值分组为连续范围. 直方图中的每个柱表示该范围中存在的值的数量的高度. R语言使用hist()函数创建直方图. 此函数使用向量作为输入,并使用一些更多的参数来绘制直方图. 语法 使用R语言创建直方图的基本语法是 hist(v,main,xlab,xlim,ylim,breaks,col,border) 以下是所使用的参数的描述 v是包含直方图中使用的数值的向量. main表示图表的标题. col用于设置条的颜色. b

  • 使用R语言绘制散点图结合边际分布图教程

    目录 1. 使用ggExtra结合ggplot2 1)传统散点图 2)密度函数 3)直方图 4)箱线图(宽窄的显示会有些问题) 5)小提琴图(会有重叠,不建议使用) 6)密度函数与直方图同时展现 2. 使用cowplot与ggpubr 1)重绘另一种散点图 2)有缝拼接 3)无缝拼接 参考 主要使用ggExtra结合ggplot2两个R包进行绘制.(胜在简洁方便)使用cowplot与ggpubr进行绘制.(胜在灵活且美观) 下面的绘图我们均以iris数据集为例. 1. 使用ggExtra结合gg

  • 利用R语言绘制时间序列图的操作

    数据 GDP.csv文件,存储1879~2019年河南省GDP数据 绘图 # 读取数据, 首先将excel 格式的转化为 csv 格式 再读取 h <- read.table(file = "C:/Users/PYY/Desktop/GDP.csv",sep = ",",header = T) # 转化为时间序列数据 GDP=ts(h$GDP,start = 1978,frequency = 1) # 绘图 plot(GDP) 补充:ts函数 ts() 函数:

  • 使用R语言绘制棒棒糖图火柴杆图教程

    目录 使用原生ggplot方法 1)生成数据 使用ggpubr包中的ggdotchart() 参考 使用原生ggplot方法 最容易也是最简单想到的方法是直接使用ggplot2包进行更新,这里需要使用ggplot本身的特性,通过图层叠加的方式,进行最终棒棒糖图的展现.(宽度极窄的柱状图配合散点图即可呈现) 1)生成数据 下面我们的展示均以此份数据为例: library(ggplot2) # Load data data("mtcars") dfm <- mtcars # Conv

  • R语言绘制Bubble Matrix气泡矩阵图

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 Step5.美化 又是一个好久不见,朋友们你们最近还好吗!最近小仙同学刚经历了人生中的一个重要的里程碑——延毕.在预料之中.又如期而至的两个字,小仙心里也是很复杂,可终究跟“毕业”二字沾了边,就当它是好事啦! 今天要给大家介绍的是气泡矩阵图,要模仿的图形如下.小仙同学一直有一个困惑:什么样的数据应该画什么类型的图,才能精确地展示数据表达出自己的意思?对于气泡矩阵图,小仙

  • R语言绘制折线图实例分析

    折线图是通过在它们之间绘制线段来连接一系列点的图. 这些点在它们的坐标(通常是x坐标)值之一中排序. 折线图通常用于识别数据中的趋势. R语言中的plot()函数用于创建折线图. 语法 在R语言中创建折线图的基本语法是 - plot(v,type,col,xlab,ylab) 以下是所使用的参数的描述 - v是包含数值的向量. 类型采用值"p"仅绘制点,"l"仅绘制线和"o"绘制点和线. xlab是x轴的标签. ylab是y轴的标签. main是

  • R语言绘制数据可视化小提琴图画法示例

    目录 Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3. 绘图所需package的安装.调用 Step4. 绘图 小提琴图之前已经画过了,不过最近小仙又看到一种貌美的画法,决定复刻一下.文献中看到的图如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据如下: Step2. 绘图数据的读取 data<-read.csv("your file path", header = T

  • R语言绘制Radar chart雷达图

    目录 更新前原文 作图方法: Step1. 绘图数据的准备 Step2. 绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图数据格式调整 Step5.绘图 填充透明度调整方法如下: 1.取消编组 2.选中线条,对象—实时上色—建立 3.选中线条,对象—拓展 4.更改填充颜色,输入相应颜色RGB数值 5.删掉图形白色背景 6.外观—填色—不透明度—调整数值 对于导出带有透明度的高清图,小仙又发现了更懒的办法,特来更新 再Rstudio里调整好透明度之后,直接导出pdf

  • R语言绘制Facet violin plot小提琴刻面图实现示例

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 Step5.美化 老铁们,许久未见啦.顺便说一下,最近可不是小仙同学偷懒哟,电脑上个月送修今天刚刚拿回来(想买联想Yoga的同学先问问自己会不会拆电脑换排线,我买的这台用了一个月,送修也用了一个月 ).最近我可攒了个大招呢,先来看看下面这张图,有没有很眼熟呢? 这张图在开始介绍R语言的时候就出现过啦,不过小仙同学当时并不知道怎么画.今天可以秀一把啦. Step1. 绘图

  • R语言绘制数据可视化Dumbbell plot哑铃图

    目录 Step1. 绘图数据的准备 Step3. 绘图所需package的安装.调用 Step4. 绘图 改变size的大小 调整顺序 又是一年春来到,小仙祝大家在新的一年开开心心.顺顺利利!今天给大家分享的图是哑铃图(Dumbbell plot). Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据格式如下: Step2. 绘图数据的读取 data <- read.csv("your file path&qu

  • R语言绘制line plot线图示例详解

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 最近小仙同学在Nature Cell Biology上看到了这样一张图,很常见的折线图画成这个样子——原来很常见的图标类型也可以“焕发新春”! 今天小仙同学就尝试用R复刻一张类似的折线图. Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.数据的格式如下图:一列表示一种变量,最后一列是每一行的行名.

  • R语言绘制数据可视化小提琴图Violin plot with dot画法

    目录 Step1.绘图数据的准备 Step2.绘图数据的读取 Step3.绘图所需package的安装.调用 Step4.绘图 小提琴图之前已经画过了,不过最近小仙又看到一种貌美的画法,决定复刻一下.文献中看到的图如下: Step1. 绘图数据的准备 首先要把你想要绘图的数据调整成R语言可以识别的格式,建议大家在excel中保存成csv格式.作图数据如下: Step2. 绘图数据的读取 data<-read.csv("your file path", header = T) #注

随机推荐