Python Opencv使用ann神经网络识别手写数字功能

opencv中也提供了一种类似于Keras的神经网络,即为ann,这种神经网络的使用方法与Keras的很接近。
关于mnist数据的解析,读者可以自己从网上下载相应压缩文件,用python自己编写解析代码,由于这里主要研究knn算法,为了图简单,直接使用Keras的mnist手写数字解析模块。
本次代码运行环境为:
python 3.6.8
opencv-python 4.4.0.46
opencv-contrib-python 4.4.0.46

下面的代码为使用ann进行模型的训练:

from keras.datasets import mnist
from keras import utils
import cv2
import numpy as np
#opencv中ANN定义神经网络层
def create_ANN():
    ann=cv2.ml.ANN_MLP_create()
    #设置神经网络层的结构 输入层为784 隐藏层为80 输出层为10
    ann.setLayerSizes(np.array([784,64,10]))
    #设置网络参数为误差反向传播法
    ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
    #设置激活函数为sigmoid
    ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
    #设置训练迭代条件
    #结束条件为训练30次或者误差小于0.00001
    ann.setTermCriteria((cv2.TermCriteria_EPS|cv2.TermCriteria_COUNT,100,0.0001))
    return ann
#计算测试数据上的识别率
def evaluate_acc(ann,test_images,test_labels):
    #采用的sigmoid激活函数,需要对结果进行置信度处理
    #对于大于0.99的可以确定为1 对于小于0.01的可以确信为0
    test_ret=ann.predict(test_images)
    #预测结果是一个元组
    test_pre=test_ret[1]
    #可以直接最大值的下标 (10000,)
    test_pre=test_pre.argmax(axis=1)
    true_sum=(test_pre==test_labels)
    return true_sum.mean()
if __name__=='__main__':
    #直接使用Keras载入的训练数据(60000, 28, 28) (60000,)
    (train_images,train_labels),(test_images,test_labels)=mnist.load_data()
    #变换数据的形状并归一化
    train_images=train_images.reshape(train_images.shape[0],-1)#(60000, 784)
    train_images=train_images.astype('float32')/255
    test_images=test_images.reshape(test_images.shape[0],-1)
    test_images=test_images.astype('float32')/255
    #将标签变为one-hot形状 (60000, 10) float32
    train_labels=utils.to_categorical(train_labels)
    #测试数据标签不用变为one-hot (10000,)
    test_labels=test_labels.astype(np.int)

    #定义神经网络模型结构
    ann=create_ANN()
    #开始训练
    ann.train(train_images,cv2.ml.ROW_SAMPLE,train_labels)
    #在测试数据上测试准确率
    print(evaluate_acc(ann,test_images,test_labels))

    #保存模型
    ann.save('mnist_ann.xml')
    #加载模型
    myann=cv2.ml.ANN_MLP_load('mnist_ann.xml')

训练100次得到的准确率为0.9376,可以接着增加训练次数或者提高神经网络的层次结构深度来提高准确率。
使用ann神经网络的模型结构非常小,因为只是保存了权重参数。

可以看到整个模型文件的大小才1M,而svm的大小为十多兆,knn的为几百兆,因此使用ann神经网络更加适合部署在客户端上。
接下来使用ann进行图片的测试识别:

import cv2
import numpy as np
if __name__=='__main__':
    #读取图片
    img=cv2.imread('shuzi.jpg',0)
    img_sw=img.copy()
    #将数据类型由uint8转为float32
    img=img.astype(np.float32)
    #图片形状由(28,28)转为(784,)
    img=img.reshape(-1,)
    #增加一个维度变为(1,784)
    img=img.reshape(1,-1)
    #图片数据归一化
    img=img/255
    #载入ann模型
    ann=cv2.ml.ANN_MLP_load('minist_ann.xml')
    #进行预测
    img_pre=ann.predict(img)
    #因为激活函数sigmoid,因此要进行置信度处理
    ret=img_pre[1]
    ret[ret>0.9]=1
    ret[ret<0.1]=0
    print(ret)
    cv2.imshow('test',img_sw)
    cv2.waitKey(0)

运行程序,结果如下,可见该模型正确识别了数字0.

到此这篇关于Python Opencv使用ann神经网络识别手写数字的文章就介绍到这了,更多相关python opencv识别手写数字内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python实现Opencv cv2.Canny()边缘检测

    目录 1. 效果图 2. 源码 补充:OpenCV-Python 中 Canny() 参数 这篇博客将介绍Canny边缘检测的概念,并利用cv2.Canny()实现边缘检测: Canny边缘检测是一种流行的边缘检测算法.它是由约翰F开发的,是一个多阶段的算法: Canny边缘检测大致包含4个步骤: 降噪(使用高斯滤波去除高频噪声): 计算边缘梯度和方向(SobelX.SobleY核在水平方向和垂直方向对平滑后的图像进行滤波,找到每个像素的边缘梯度和方向): 非最大抑制(在得到梯度大小和方向后,对

  • Python-OpenCV实战:利用 KNN 算法识别手写数字

    目录 前言 手写数字数据集 MNIST 介绍 基准模型--利用 KNN 算法识别手写数字 改进模型1--参数 K 对识别手写数字精确度的影响 改进模型2--训练数据量对识别手写数字精确度的影响 改进模型3--预处理对识别手写数字精确度的影响 改进模型4--使用高级描述符作为图像特征提高 KNN 算法准确率 完整代码 相关链接 前言 K-最近邻 (k-nearest neighbours, KNN) 是监督学习中最简单的算法之一,KNN 可用于分类和回归问题,在博文<Python OpenCV实战

  • Python Opencv使用ann神经网络识别手写数字功能

    opencv中也提供了一种类似于Keras的神经网络,即为ann,这种神经网络的使用方法与Keras的很接近.关于mnist数据的解析,读者可以自己从网上下载相应压缩文件,用python自己编写解析代码,由于这里主要研究knn算法,为了图简单,直接使用Keras的mnist手写数字解析模块.本次代码运行环境为:python 3.6.8opencv-python 4.4.0.46opencv-contrib-python 4.4.0.46 下面的代码为使用ann进行模型的训练: from kera

  • Python利用 SVM 算法实现识别手写数字

    目录 前言 使用 SVM 进行手写数字识别 参数 C 和 γ 对识别手写数字精确度的影响 完整代码 前言 支持向量机 (Support Vector Machine, SVM) 是一种监督学习技术,它通过根据指定的类对训练数据进行最佳分离,从而在高维空间中构建一个或一组超平面.在博文<OpenCV-Python实战(13)--OpenCV与机器学习的碰撞>中,我们已经学习了如何在 OpenCV 中实现和训练 SVM 算法,同时通过简单的示例了解了如何使用 SVM 算法.在本文中,我们将学习如何

  • Python与人工神经网络:使用神经网络识别手写图像介绍

    人体的视觉系统是一个相当神奇的存在,对于下面的一串手写图像,可以毫不费力的识别出他们是504192,轻松到让人都忘记了其实这是一个复杂的工作. 实际上在我们的大脑的左脑和右脑的皮层都有一个第一视觉区域,叫做V1,里面有14亿视觉神经元.而且,在我们识别上面的图像的时候,工作的不止有V1,还有V2.V3.V4.V5,所以这么一看,我们确实威武. 但是让计算机进行模式识别,就比较复杂了,主要困难在于我们如何给计算机描述一个数字9在图像上应该是怎样的,比如我们跟计算机说,9的上面是一个圈,下右边是1竖

  • Python神经网络TensorFlow基于CNN卷积识别手写数字

    目录 基础理论 一.训练CNN卷积神经网络 1.载入数据 2.改变数据维度 3.归一化 4.独热编码 5.搭建CNN卷积神经网络 5-1.第一层:第一个卷积层 5-2.第二层:第二个卷积层 5-3.扁平化 5-4.第三层:第一个全连接层 5-5.第四层:第二个全连接层(输出层) 6.编译 7.训练 8.保存模型 代码 二.识别自己的手写数字(图像) 1.载入数据 2.载入训练好的模型 3.载入自己写的数字图片并设置大小 4.转灰度图 5.转黑底白字.数据归一化 6.转四维数据 7.预测 8.显示

  • Python实战小项目之Mnist手写数字识别

    目录 程序流程分析图: 传播过程: 代码展示: 创建环境 准备数据集 下载数据集 下载测试集 绘制图像 搭建神经网络 训练模型 测试模型 保存训练模型 运行结果展示: 程序流程分析图: 传播过程: 代码展示: 创建环境 使用<pip install+包名>来下载torch,torchvision包 准备数据集 设置一次训练所选取的样本数Batch_Sized的值为512,训练此时Epochs的值为8 BATCH_SIZE = 512 EPOCHS = 8 device = torch.devi

  • Python实现识别手写数字 Python图片读入与处理

    写在前面 在上一篇文章Python徒手实现手写数字识别-大纲中,我们已经讲过了我们想要写的全部思路,所以我们不再说全部的思路. 我这一次将图片的读入与处理的代码写了一下,和大纲写的过程一样,这一段代码分为以下几个部分: 读入图片: 将图片读取为灰度值矩阵: 图片背景去噪: 切割图片,得到手写数字的最小矩阵: 拉伸/压缩图片,得到标准大小为100x100大小矩阵: 将图片拉为1x10000大小向量,存入训练矩阵中. 所以下面将会对这几个函数进行详解. 代码分析 基础内容 首先我们现在最前面定义基础

  • Python实现识别手写数字大纲

    写在前面 其实我之前写过一个简单的识别手写数字的程序,但是因为逻辑比较简单,而且要求比较严苛,是在50x50大小像素的白底图上手写黑色数字,并且给的训练材料也不够多,导致准确率只能五五开.所以这一次准备写一个加强升级版的,借此来提升我对Python处理文件与图片的能力. 这次准备加强难度: 被识别图片可以是任意大小: 不一定是白底图,只要数字颜色是黑色,周围环境是浅色就行: 加强识别手写数字的逻辑,提升准确率. 因为我还没开始正式写,并且最近专业课程学习也比较紧迫,所以可能更新的比较慢.不过放心

  • python实现识别手写数字 python图像识别算法

    写在前面 这一段的内容可以说是最难的一部分之一了,因为是识别图像,所以涉及到的算法会相比之前的来说比较困难,所以我尽量会讲得清楚一点. 而且因为在编写的过程中,把前面的一些逻辑也修改了一些,将其变得更完善了,所以一切以本篇的为准.当然,如果想要直接看代码,代码全部放在我的GitHub中,所以这篇文章主要负责讲解,如需代码请自行前往GitHub. 本次大纲 上一次写到了数据库的建立,我们能够实时的将更新的训练图片存入CSV文件中.所以这次继续往下走,该轮到识别图片的内容了. 首先我们需要从文件夹中

  • Python实现识别手写数字 简易图片存储管理系统

    写在前面 上一篇文章Python实现识别手写数字-图像的处理中我们讲了图片的处理,将图片经过剪裁,拉伸等操作以后将每一个图片变成了1x10000大小的向量.但是如果只是这样的话,我们每一次运行的时候都需要将他们计算一遍,当图片特别多的时候会消耗大量的时间. 所以我们需要将这些向量存入一个文件当中,每次先看看图库中有没有新增的图片,如果有新增的图片,那么就将新增的图片变成1x10000向量再存入文件之中,然后从文件中读取全部图片向量即可.当图库中没有新增图片的时候,那么就直接调用文件中的图片向量进

  • python使用KNN算法识别手写数字

    本文实例为大家分享了python使用KNN算法识别手写数字的具体代码,供大家参考,具体内容如下 # -*- coding: utf-8 -*- #pip install numpy import os import os.path from numpy import * import operator import time from os import listdir """ 描述: KNN算法实现分类器 参数: inputPoint:测试集 dataSet:训练集 lab

随机推荐