Python破解极验滑动验证码详细步骤

极验滑动验证码

以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/。

现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

1、输入用户名,密码

2、点击按钮验证,弹出没有缺口的图

3、获得没有缺口的图片

4、点击滑动按钮,弹出有缺口的图

5、获得有缺口的图片

6、对比两张图片,找出缺口,即滑动的位移

7、按照人的行为行为习惯,把总位移切成一段段小的位移

8、按照位移移动

9、完成登录

实现

位移移动需要的基础知识

位移移动相当于匀变速直线运动,类似于小汽车从起点开始运行到终点的过程(首先为匀加速,然后再匀减速)。

其中a为加速度,且为恒量(即单位时间内的加速度是不变的),t为时间

位移移动的代码实现

def get_track(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+(1/2)at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.2秒移动的距离
    '''
    # 初速度
    v=0
    # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.1
    # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    # 当前的位移
    current=0
    # 到达mid值开始减速
    mid=distance * 4/5

    distance += 10  # 先滑过一点,最后再反着滑动回来

    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a = 2  # 加速运动
        else:
            a = -3 # 减速运动

        # 初速度
        v0 = v
        # 0.2秒时间内的位移
        s = v0*t+0.5*a*(t**2)
        # 当前的位置
        current += s
        # 添加到轨迹列表
        tracks.append(round(s))

        # 速度已经达到v,该速度作为下次的初速度
        v= v0+a*t

    # 反着滑动到大概准确位置
    for i in range(3):
       tracks.append(-2)
    for i in range(4):
       tracks.append(-1)
    return tracks

对比两张图片,找出缺口

def get_distance(image1,image2):
    '''
      拿到滑动验证码需要移动的距离
      :param image1:没有缺口的图片对象
      :param image2:带缺口的图片对象
      :return:需要移动的距离
      '''
    # print('size', image1.size)

    threshold = 50
    for i in range(0,image1.size[0]):  # 260
        for j in range(0,image1.size[1]):  # 160
            pixel1 = image1.getpixel((i,j))
            pixel2 = image2.getpixel((i,j))
            res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
            res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
            res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
            if res_R > threshold and res_G > threshold and res_B > threshold:
                return i  # 需要移动的距离

获得图片

def merge_image(image_file,location_list):
    """
     拼接图片
    :param image_file:
    :param location_list:
    :return:
    """
    im = Image.open(image_file)
    im.save('code.jpg')
    new_im = Image.new('RGB',(260,116))
    # 把无序的图片 切成52张小图片
    im_list_upper = []
    im_list_down = []
    # print(location_list)
    for location in location_list:
        # print(location['y'])
        if location['y'] == -58: # 上半边
            im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
        if location['y'] == 0:  # 下半边
            im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))

    x_offset = 0
    for im in im_list_upper:
        new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
        x_offset += im.size[0]

    x_offset = 0
    for im in im_list_down:
        new_im.paste(im,(x_offset,58))
        x_offset += im.size[0]
    new_im.show()
    return new_im

def get_image(driver,div_path):
    '''
    下载无序的图片  然后进行拼接 获得完整的图片
    :param driver:
    :param div_path:
    :return:
    '''
    time.sleep(2)
    background_images = driver.find_elements_by_xpath(div_path)
    location_list = []
    for background_image in background_images:
        location = {}
        result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
        # print(result)
        location['x'] = int(result[0][1])
        location['y'] = int(result[0][2])

        image_url = result[0][0]
        location_list.append(location)

    print('==================================')
    image_url = image_url.replace('webp','jpg')
    # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
    image_result = requests.get(image_url).content
    # with open('1.jpg','wb') as f:
    #     f.write(image_result)
    image_file = BytesIO(image_result) # 是一张无序的图片
    image = merge_image(image_file,location_list)

    return image

按照位移移动

print('第一步,点击滑动按钮')
    ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
    time.sleep(1)
    print('第二步,拖动元素')
    for track in track_list:
         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)
    if l<100:
        ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform()
    else:
        ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()
    time.sleep(1)
    print('第三步,释放鼠标')
    ActionChains(driver).release(on_element=element).perform()

详细代码

from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的
from selenium.webdriver.common.action_chains import ActionChains  #拖拽
from selenium.webdriver.support import expected_conditions as EC
from selenium.common.exceptions import TimeoutException, NoSuchElementException
from selenium.webdriver.common.by import By
from PIL import Image
import requests
import time
import re
import random
from io import BytesIO

def merge_image(image_file,location_list):
    """
     拼接图片
    :param image_file:
    :param location_list:
    :return:
    """
    im = Image.open(image_file)
    im.save('code.jpg')
    new_im = Image.new('RGB',(260,116))
    # 把无序的图片 切成52张小图片
    im_list_upper = []
    im_list_down = []
    # print(location_list)
    for location in location_list:
        # print(location['y'])
        if location['y'] == -58: # 上半边
            im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))
        if location['y'] == 0:  # 下半边
            im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))

    x_offset = 0
    for im in im_list_upper:
        new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上
        x_offset += im.size[0]

    x_offset = 0
    for im in im_list_down:
        new_im.paste(im,(x_offset,58))
        x_offset += im.size[0]
    new_im.show()
    return new_im

def get_image(driver,div_path):
    '''
    下载无序的图片  然后进行拼接 获得完整的图片
    :param driver:
    :param div_path:
    :return:
    '''
    time.sleep(2)
    background_images = driver.find_elements_by_xpath(div_path)
    location_list = []
    for background_image in background_images:
        location = {}
        result = re.findall('background-image: url\("(.*?)"\); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))
        # print(result)
        location['x'] = int(result[0][1])
        location['y'] = int(result[0][2])

        image_url = result[0][0]
        location_list.append(location)

    print('==================================')
    image_url = image_url.replace('webp','jpg')
    # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'
    image_result = requests.get(image_url).content
    # with open('1.jpg','wb') as f:
    #     f.write(image_result)
    image_file = BytesIO(image_result) # 是一张无序的图片
    image = merge_image(image_file,location_list)

    return image

def get_track(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+(1/2)at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.2秒移动的距离
    '''
    # 初速度
    v=0
    # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.2
    # 位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    # 当前的位移
    current=0
    # 到达mid值开始减速
    mid=distance * 7/8

    distance += 10  # 先滑过一点,最后再反着滑动回来
    # a = random.randint(1,3)
    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a = random.randint(2,4)  # 加速运动
        else:
            a = -random.randint(3,5) # 减速运动

        # 初速度
        v0 = v
        # 0.2秒时间内的位移
        s = v0*t+0.5*a*(t**2)
        # 当前的位置
        current += s
        # 添加到轨迹列表
        tracks.append(round(s))

        # 速度已经达到v,该速度作为下次的初速度
        v= v0+a*t

    # 反着滑动到大概准确位置
    for i in range(4):
       tracks.append(-random.randint(2,3))
    for i in range(4):
       tracks.append(-random.randint(1,3))
    return tracks

def get_distance(image1,image2):
    '''
      拿到滑动验证码需要移动的距离
      :param image1:没有缺口的图片对象
      :param image2:带缺口的图片对象
      :return:需要移动的距离
      '''
    # print('size', image1.size)

    threshold = 50
    for i in range(0,image1.size[0]):  # 260
        for j in range(0,image1.size[1]):  # 160
            pixel1 = image1.getpixel((i,j))
            pixel2 = image2.getpixel((i,j))
            res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差
            res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
            res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差
            if res_R > threshold and res_G > threshold and res_B > threshold:
                return i  # 需要移动的距离

def main_check_code(driver, element):
    """
     拖动识别验证码
    :param driver:
    :param element:
    :return:
    """
    image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')
    image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')
    # 图片上 缺口的位置的x坐标

    # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    l = get_distance(image1, image2)
    print('l=',l)
    # 3 获得移动轨迹
    track_list = get_track(l)
    print('第一步,点击滑动按钮')
    ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放
    time.sleep(1)
    print('第二步,拖动元素')
    for track in track_list:
         ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()  # 鼠标移动到距离当前位置(x,y)     time.sleep(0.002)
    # if l>100:

    ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()
    time.sleep(1)
    print('第三步,释放鼠标')
    ActionChains(driver).release(on_element=element).perform()
    time.sleep(5)

def main_check_slider(driver):
    """
    检查滑动按钮是否加载
    :param driver:
    :return:
    """
    while True:
        try :
            driver.get('http://www.cnbaowen.net/api/geetest/')
            element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))
            if element:
                return element
        except TimeoutException as e:
            print('超时错误,继续')
            time.sleep(5)

if __name__ == '__main__':
    try:
        count = 6  # 最多识别6次
        driver = webdriver.Chrome()
        # 等待滑动按钮加载完成
        element = main_check_slider(driver)
        while count > 0:
            main_check_code(driver,element)
            time.sleep(2)
            try:
                success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')
                # 得到成功标志
                print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))
                success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))
                if success_images:
                    print('成功识别!!!!!!')
                    count = 0
                    break
            except NoSuchElementException as e:
                print('识别错误,继续')
                count -= 1
                time.sleep(2)
        else:
            print('too many attempt check code ')
            exit('退出程序')
    finally:
        driver.close()

成功识别标志css

以上就是Python破解极验滑动验证码的详细内容,更多关于Python极验滑动验证码的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python 200行代码实现一个滑动验证码过程详解

    前言 做网络爬虫的同学肯定见过各种各样的验证码,比较高级的有滑动.点选等样式,看起来好像挺复杂的,但实际上它们的核心原理还是还是很清晰的,本文章大致说明下这些验证码的原理以及带大家实现一个滑动验证码. 实际上这类验证码的校验是分为两个步骤的: 1.第一步就是前端的校验.一般来说,登录注册页面在点击提交的时候都会伴随着一个表单提交,在表单提交的时候会有 JavaScript 事件的触发.如果加入了验证码,那么在表单提交的时候会多加一个额外的验证,判断这个验证码是否已经成功完成了操作.如果没有的话,

  • 基于python实现破解滑动验证码过程解析

    前言: 很多小伙伴们反馈,在web自动化的过程中,经常会被登录的验证码给卡住,不知道如何去通过验证码的验证.今天专门给大家来聊聊验证码的问题,一般的情况下遇到验证码我们可以都可以找开发去帮忙解决,关闭验证码,或者给一个万能的验证码!那么如果开发不提供帮助的话,我们自己有没有办法来处理这些验证码的问题呢?答案当然是有的,常见的验证码一般分为两类,一类是图文验证码,一类是滑动验证码! 今天我们主要来聊聊滑动验证码如何去识别破解. 滑动验证破解思路 关于滑动验证码破解的思路大体上来讲就是以下两个步骤:

  • python破解bilibili滑动验证码登录功能

    地址:https://passport.bilibili.com/login 左图事完整验证码图,右图是有缺口的验证码图                                    步骤: 1.准备bilibili账号 2.工具:pycharm selenium chromedriver PIL 3.破解思路: 找到完整验证码和有缺口的验证码图片,然后计算缺口坐标,再利用selenium移动按钮到指定位置,齐活 步骤代码如下: 先导入需要的包和库 from selenium impor

  • python验证码识别教程之滑动验证码

    前言 上篇文章记录了2种分割验证码的方法,此外还有一种叫做"滴水算法"(Drop Fall Algorithm)的方法,但本人智商原因看这个算法看的云里雾里的,所以今天记录滑动验证码的处理吧.网上据说有大神已经破解了滑动验证码的算法,可以不使用selenium来破解,但本人能力不足还是使用笨方法吧. 基础原理很简单,首先点击验证码按钮后的图片是滑动后的完整结果,点击一下滑块后会出现拼图,对这2个分别截图后比较像素值来找出滑动距离,并结合selenium来实现拖拽效果. 至于seleni

  • 使用Python的OpenCV模块识别滑动验证码的缺口(推荐)

    最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了. 测试使用如下两张图片: target.jpg template.png 现在想要通过"template.png"在"target.jpg"中找到对应的缺口,代码实现如下: # encoding=utf8 import cv2 import numpy as np def show(name): cv2.imshow('Show', name) cv

  • python爬虫之验证码篇3-滑动验证码识别技术

    滑动验证码介绍 本篇涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧即可完成. 这类验证码不常见了,官方介绍地址为:https://promotion.aliyun.com/ntms/act/captchaIntroAndDemo.html 使用起来肯定是非常安全的了,不是很好通过机器检测 如何判断验证码类型 这个验证码的标识一般比较明显,在页面源码中一般存在一个 nc.js 基本可以判定是阿里云的验证码了 <script type="text/j

  • Python破解极验滑动验证码详细步骤

    极验滑动验证码 以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/. 现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频.金融服务.电子商务.游戏娱乐.政府企业等各大类型网站 对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤 1.输入用户名,密码 2.点击

  • selenium+java破解极验滑动验证码的示例代码

    摘要 分析验证码素材图片混淆原理,并采用selenium模拟人拖动滑块过程,进而破解验证码. 人工验证的过程 1.打开威锋网注册页面 2.移动鼠标至小滑块,一张完整的图片会出现(如下图1) 3.点击鼠标左键,图片中间会出现一个缺块(如下图2) 4.移动小滑块正上方图案至缺块处 5.验证通过 selenium模拟验证的过程 加载威锋网注册页面 下载图片1和缺块图片2 根据两张图片的差异计算平移的距离x 模拟鼠标点击事件,点击小滑块向右移动x 验证通过 详细分析 1.打开chrome浏览器控制台,会

  • Thinkphp极验滑动验证码实现步骤解析

    对于建站的筒子们来说:垃圾广告真是让人深恶痛绝: 为了清净:搞个难以识别的验证码吧:又被用户各种吐槽: 直到后来出现了极验这个滑动的验证码:这真是一个体验好安全高的方案: 官网:http://www.geetest.com/(此处应该有广告费) 示例项目:https://github.com/baijunyao/thinkphp-bjyadmin 一:注册获取key 注册:创建应用:获取key: 二:导入sdk /ThinkPHP/Library/Org/Xb/Geetest.class.php

  • Python3网络爬虫开发实战之极验滑动验证码的识别

    上节我们了解了图形验证码的识别,简单的图形验证码我们可以直接利用 Tesserocr 来识别,但是近几年又出现了一些新型验证码,如滑动验证码,比较有代表性的就是极验验证码,它需要拖动拼合滑块才可以完成验证,相对图形验证码来说识别难度上升了几个等级,本节来讲解下极验验证码的识别过程. 1. 本节目标 本节我们的目标是用程序来识别并通过极验验证码的验证,其步骤有分析识别思路.识别缺口位置.生成滑块拖动路径,最后模拟实现滑块拼合通过验证. 2. 准备工作 本次我们使用的 Python 库是 Selen

  • thinkphp整合系列之极验滑动验证码geetest功能

    给一个央企做官网,登录模块用的thinkphp验证码类.但是2019-6-10到12号,国家要求央企检验官网漏洞,防止黑客攻击,正直贸易战激烈升级时期,所以各事业单位很重视官网安全性,于是乎集团总部就委托了宁波一个专业检测公司用专业工具检测出,后台验证码能用打码工具暴力破解,发函要求整改.so,就有了下面的极速验证图形 官网:http://www.geetest.com/ 一:注册获取key 注册:创建应用:获取key: 二:导入sdk /ThinkPHP/Library/Org/Xb/Geet

  • Java selenium处理极验滑动验证码示例

    要爬取一个网站遇到了极验的验证码,这周都在想着怎么破解这个,网上搜了好多知乎上看到有人问了这问题,我按照这思路去大概实现了一下. 1.使用htmlunit(这种方式我没成功,模拟鼠标拖拽后轨迹没生成,可以跳过) 我用的是java,我首先先想到了用直接用htmlunit,我做了点初始化 private void initWebClient() { if (webClient != null) { return; } webClient = new WebClient(BrowserVersion.

  • 使用puppeteer破解极验的滑动验证码

    基本的流程: 1. 打开前端网,点击登录. 2. 填写账号,密码. 3. 点解验证按钮,通过滑动验证,最后成功登陆. 代码实现: github上可以checkout. 具体代码如下所示: run.js const puppeteer = require('puppeteer'); const devices = require('puppeteer/DeviceDescriptors'); const iPhone = devices['iPhone 6 Plus']; let timeout

  • Python激活Anaconda环境变量的详细步骤

    简洁版 Windows10系统下,按Win+R键启动运行,输入cmd,进入命令窗口 输入conda info --envs,查看conda 环境变量的路径,base后边就是环境变量的路径. 接着输入conda activate +上述查到的环境变量路径,激活环境变量. 如果想停止激活Anaconda Python的环境变量,可以使用conda deactivate命令进行停止激活 详细版 第一,Windows10系统下,按Win+R键启动运行,输入cmd,进入命令窗口,输入conda init,

  • vmware10.0破解版安装centos的详细步骤

    本文为大家分享了vmware安装centos教程,供大家参考,具体内容如下 软件环境:vmware10.0破解版 centos版本:6.4 1.启动vmware,新建虚拟机,选择自定义安装 2.出现如下界面,保持默认,点击下一步 3.这个步骤要特别注意,选择"稍后安装",我们就可以对linux系统自定义 4.选择2.6的内核 5.为虚拟机起个名字,选择存放的位置,注意存放的空间最好是大于20G以上. 6.学习机保持默认即可 7,安装6以上的版本,建议内存最少1G,我的设置为2G,我的电

  • 用python实现域名资产监控的详细步骤

    应用场景 域名资产监控,通过输入一个主域名,找到该域名对应的ip地址所在的服务器的端口开闭情况.通过定期做这样的监控,有助于让自己知道自己的资产的整体暴露面情况. 所需要具备的前缀技能 python的简单使用 linux操作系统的简单使用 DNS的原理 工具 pycharm 专业版 xshell 用于部署脚本 步骤 通过域名得到对应的ip地址 首先,我们知道对于一个域名来说,可以设置很多类型的记录值,比如A记录.AAAA记录.SOA记录.TXT记录等等.安全领域常见的记录值和其含义对应关系如下:

随机推荐