pytorch 在sequential中使用view来reshape的例子

pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类,因此需要自己定义一个方法:

import torch.nn as nn
class Reshape(nn.Module):
  def __init__(self, *args):
    super(Reshape, self).__init__()
    self.shape = args

  def forward(self, x):
    # 如果数据集最后一个batch样本数量小于定义的batch_batch大小,会出现mismatch问题。可以自己修改下,如只传入后面的shape,然后通过x.szie(0),来输入。
    return x.view(self.shape)
class Reshape(nn.Module):
  def __init__(self, *args):
    super(Reshape, self).__init__()
    self.shape = args
  def forward(self, x):
    return x.view((x.size(0),)+self.shape)

以上这篇pytorch 在sequential中使用view来reshape的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 对Pytorch中nn.ModuleList 和 nn.Sequential详解

    简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成.而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用. 需要注意的是,nn.ModuleList接受的必须是subModule类型,例如: nn.ModuleList( [nn.ModuleList([Conv(inp_dim

  • pytorch在fintune时将sequential中的层输出方法,以vgg为例

    有时候我们在fintune时发现pytorch把许多层都集合在一个sequential里,但是我们希望能把中间层的结果引出来做下一步操作,于是我自己琢磨了一个方法,以vgg为例,有点僵硬哈! 首先pytorch自带的vgg16模型的网络结构如下: VGG( (features): Sequential( (0): Conv2d (3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): ReLU(inplace) (2): Co

  • pytorch 在sequential中使用view来reshape的例子

    pytorch中view是tensor方法,然而在sequential中包装的是nn.module的子类,因此需要自己定义一个方法: import torch.nn as nn class Reshape(nn.Module): def __init__(self, *args): super(Reshape, self).__init__() self.shape = args def forward(self, x): # 如果数据集最后一个batch样本数量小于定义的batch_batch

  • PyTorch中view()与 reshape()的区别详析

    目录 前言 一.PyTorch中tensor的存储方式 1.PyTorch张量存储的底层原理 2.PyTorch张量的步长(stride)属性 二.对“视图(view)”字眼的理解 三.view() 和reshape() 的比较 1.对 torch.Tensor.view() 的理解 2.对 torch.reshape() 的理解 四.总结 前言 总之,两者都是用来重塑tensor的shape的.view只适合对满足连续性条件(contiguous)的tensor进行操作,而reshape同时还

  • pytorch中的 .view()函数的用法介绍

    目录 一.普通用法(手动调整size) 二.特殊用法:参数-1(自动调整size) 一.普通用法 (手动调整size) view()相当于reshape.resize,重新调整Tensor的形状. import torch a1 = torch.arange(0,16) print(a1) # tensor([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15]) a2 = a1.view(8, 2) a3 = a1.vi

  • Pytorch在NLP中的简单应用详解

    因为之前在项目中一直使用Tensorflow,最近需要处理NLP问题,对Pytorch框架还比较陌生,所以特地再学习一下pytorch在自然语言处理问题中的简单使用,这里做一个记录. 一.Pytorch基础 首先,第一步是导入pytorch的一系列包 import torch import torch.autograd as autograd #Autograd为Tensor所有操作提供自动求导方法 import torch.nn as nn import torch.nn.functional

  • 在PyTorch中Tensor的查找和筛选例子

    本文源码基于版本1.0,交互界面基于0.4.1 import torch 按照指定轴上的坐标进行过滤 index_select() 沿着某tensor的一个轴dim筛选若干个坐标 >>> x = torch.randn(3, 4) # 目标矩阵 >>> x tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664, 0.2647, -0.1228, -1.1068], [-1.1734, -0.6571, 0.7230,

  • 浅谈Keras的Sequential与PyTorch的Sequential的区别

    深度学习库Keras中的Sequential是多个网络层的线性堆叠,在实现AlexNet与VGG等网络方面比较容易,因为它们没有ResNet那样的shortcut连接.在Keras中要实现ResNet网络则需要Model模型. 下面是Keras的Sequential具体示例: 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.models import Sequential from keras.layers import Dense, Acti

  • 浅谈numpy中函数resize与reshape,ravel与flatten的区别

    这两组函数中区别很是类似,都是一个不改变之前的数组,一个改变数组本身 resize和reshape >>> import numpy as np >>> a = np.arange(20).reshape(4,5) >>> a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) >>> a.reshape(2,1

  • 实例讲解JavaScript的Backbone.js框架中的View视图

    Backbone 中的 View 用来反映你 app 中 Model 的模样.它们会监听事件并作出相应的反应. 接下来的教程我不会告诉你如何把 Model 和 Collection 绑定到 View 上,而是主要讨论 View 是如何使用 javascript 模板库的,尤其是 Underscore.js's _.template. 这里我们使用 jQuery 来操作 DOM 元素,当然你也可以使用其他的库,例如 MooTools 或者 Sizzle,但是 Backbone 的官方文档推荐我们使

  • Visual C++中Tab View的多种实现方法

    本文实例讲述了Visual C++中Tab View的多种实现方法,分享给大家供大家参考.具体如下: 一.引言 标签控件(Tab Control)是VC++编程中经常使用的控件之一,它允许在单个对话框或窗口中设置多个页面,每个页面代表一组控件.当某个页面的标签被选中时,该页 面内的控件就会被显示出来.标签控件使得在有限的窗口空间内可以显示更多的信息,而且分类清晰.同时,VC++提供了以文档/视图 (Document/View)结构方式开发应用程序的简单方法,在文档中保存数据,在视图中显示数据.无

随机推荐