python opencv 简单阈值算法的实现

本文先了解一个简单阈值函数,以了解一个阈值算法的具体参数。

然后比较不同阈值函数的区别。

同样的,先用一副图说明本文重要大纲:

#! usr/bin/env python
# coding: utf-8
import cv2

img = cv2.imread('cat.jpg')
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# 先将图像矩阵进行二值化
# img = cv2.imread('cat.jpg',0)
# 也可以直接将图像用灰度值读入,其中0就表示用灰度读图

cv2.imshow('img',img)

_,img1 = cv2.threshold(img,100,250,cv2.THRESH_BINARY)
# 这个函数返回两个值,第二个值才是二值化后的图像矩阵
# 最后一个参数表示一种二值化算法
# 阈值设置为100,
# 250表示大于100的像素值会被重新赋值为250

cv2.imshow('img',img1)

# cv2.waitKey()
cv2.destroyAllWindows()

############ 以下比较不同简单二值化算法的区别

# 先进行不同算法的二值化
ret,img1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# 从名字可以看出一点来,binary是二元的意思,这里指要么0,要么指定的一个值(255)
print(ret)
ret,img2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
# 注意到INV表示逆,全写是inverse
ret,img3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
# 注意到truncate表示截断的意思。这个函数不再是二元,而是对超过某个值的部分进行处理,否则并不会处理。
ret,img4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
# 实际上,这也是一种阶段,对大于某一个值的像素值进行调整,与trunc不同的是,这里变为0,而不是最大值
ret,img5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

import numpy as np
import matplotlib.pyplot as plt
#用这个模块来画图显示,这个库和opencv有些不同,可参考前面的博客
# https://blog.csdn.net/qq_27261889/article/details/80543966

# 先定义以下图的图题和图像矩阵
titles = ['original','binary','binary_inv','trunc','tozero','tozero_inv']
imgs = [img,img1,img2,img3,img4,img5]

for i in range(6):
  plt.subplot(2,3,i+1)#分别画出每一个图
  plt.imshow(imgs[i],'gray')
  plt.title(titles[i])#写出图题

plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python+opencv实现阈值分割

    最近老师留了几个作业,虽然用opencv很简单一句话就出来了,但是还没用python写过.在官方文档中的tutorial中的threshold里,看到可以创建两个滑动条来选择type和value,决定用python实现一下 注意python中的全局变量,用global声明 开始出现了一些问题,因为毁掉函数每次只能传回一个值,所以每次只能更新value,后来就弄了两个毁掉函数,这个时候,又出现了滑动其中一个,另一个的值就会变为默认值的情况,这个时候猜想是全局变量的问题,根据猜想改动之后果然是. 感

  • python opencv 简单阈值算法的实现

    本文先了解一个简单阈值函数,以了解一个阈值算法的具体参数. 然后比较不同阈值函数的区别. 同样的,先用一副图说明本文重要大纲: #! usr/bin/env python # coding: utf-8 import cv2 img = cv2.imread('cat.jpg') img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 先将图像矩阵进行二值化 # img = cv2.imread('cat.jpg',0) # 也可以直接将图像用灰度值读入,其中0

  • Python+OpenCV实现阈值分割的方法详解

    目录 一.全局阈值 1.效果图 2.源码 二.滑动改变阈值(滑动条) 1.效果图 2.源码 三.自适应阈值分割 1.效果图 2.源码 3.GaussianBlur()函数去噪 四.参数解释 一.全局阈值 原图: 整幅图采用一个阈值,与图片的每一个像素灰度进行比较,重新赋值: 1.效果图 2.源码 import cv2 import matplotlib.pyplot as plt #设定阈值 thresh=130 #载入原图,并转化为灰度图像 img_original=cv2.imread(r'

  • 详解Python中图像边缘检测算法的实现

    目录 写在前面 1.一阶微分算子 1.1 Prewitt算子 1.2 Sobel算子 2.二阶微分算子 2.1 Laplace算子 2.2 LoG算子 3.Canny边缘检测 写在前面 从本节开始,计算机视觉教程进入第三章节——图像特征提取.在本章,你会见到一张简简单单的图片中蕴含着这么多你没注意到的细节特征,而这些特征将会在今后更高级的应用中发挥着极其重要的作用.本文讲解基础特征之一——图像边缘. 本文采用面向对象设计,定义了一个边缘检测类EdgeDetect,使图像边缘检测算法的应用更简洁,

  • 使用Python处理KNN分类算法的实现代码

    目录 KNN分类算法的介绍 测试数据 Python代码实现 结果分析 简介: 我们在这世上,选择什么就成为什么,人生的丰富多彩,得靠自己成就.你此刻的付出,决定了你未来成为什么样的人,当你改变不了世界,你还可以改变自己. KNN分类算法的介绍 KNN分类算法(K-Nearest-Neighbors Classification),又叫K近邻算法,是一个概念极其简单,而分类效果又很优秀的分类算法. 他的核心思想就是,要确定测试样本属于哪一类,就寻找所有训练样本中与该测试样本“距离”最近的前K个样本

  • Python OpenCV简单的绘图函数使用教程

    目录 1.画直线的函数是cv2.line 2.画矩形的函数是cv2.rectangle 3.画圆函数是cv2.circle 4.画椭圆的函数是cv2.elipes 5.画多边形的函数是cv2.polylines 6.添加文字的函数是cv2.putText 1.画直线的函数是cv2.line cv2.line函数语法: cv2.line(img,start_point,end_point,color,thickness=0) cv2.line函数参数解释: img:需要画的图像 start_poi

  • 一文详解Vue3中简单diff算法的实现

    目录 简单Diff算法 减少DOM操作 例子 结论 实现 DOM复用与key的作用 例子 虚拟节点的key 实现 找到需要移动的元素 探索节点顺序关系 实现 如何移动元素 例子 实现 添加新元素 例子 实现 移除不存在的元素 例子 实现 总结 简单Diff算法 核心Diff只关心新旧虚拟节点都存在一组子节点的情况 减少DOM操作 例子 // 旧节点 const oldVNode = { type: 'div', children: [ { type: 'p', children: '1' },

  • Python编程中归并排序算法的实现步骤详解

    基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止.然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序. 归并操作过程: 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列 设定两个指针,最初位置分别为两个已经排序序列的起始位置 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置 重复步骤3直到某一指针达到序列尾

  • python+opencv实现霍夫变换检测直线

    本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下 python+opencv实现高斯平滑滤波 python+opencv实现阈值分割 功能: 创建一个滑动条来控制检测直线的长度阈值,即大于该阈值的检测出来,小于该阈值的忽略 注意:这里用的函数是HoughLinesP而不是HoughLines,因为HoughLinesP直接给出了直线的断点,在画出线段的时候可以偷懒 代码: # -*- coding: utf-8 -*- import cv2

  • python+opencv实现高斯平滑滤波

    功能: 创建两个滑动条来分别控制高斯核的size和σσ的大小,这个程序是在阈值分割的那个程序上改动的.阈值分割程序在这 注意:由于σ=0σ=0时,opencv会根据窗口大小计算出σσ,所以,从0滑动σσ的滑动条时,会出现先边清晰又变模糊的现象 python+opencv实现阈值分割 python+opencv实现霍夫变换检测直线 (2016-5-10)到OpenCV-Python Tutorials's documentation!可以下载 代码: # -*- coding: utf-8 -*-

随机推荐