详细介绍pandas的DataFrame的append方法使用

官方文档介绍链接:append方法介绍

DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None)

功能说明:向dataframe对象中添加新的行,如果添加的列名不在dataframe对象中,将会被当作新的列进行添加

  • other:DataFrame、series、dict、list这样的数据结构
  • ignore_index:默认值为False,如果为True则不使用index标签
  • verify_integrity :默认值为False,如果为True当创建相同的index时会抛出ValueError的异常
  • sort:boolean,默认是None,该属性在pandas的0.23.0的版本才存在。

append添加字典

import pandas as pd

  data = pd.DataFrame()
  a = {"x":1,"y":2}
  data = data.append(a,ignore_index=True)
  print(data)

append添加series

如果不添加ignore_index=True,会报错提示TypeError: Can only append a Series if ignore_index=True or if the Series has a name,如果不添加ignore_index=True,也可以改成以下代码

 import pandas as pd

  data = pd.DataFrame()
  series = pd.Series({"x":1,"y":2},name="a")
  data = data.append(series)
  print(data)

注意:当dataframe使用append方法添加series的时候,必须要设置name,设置name名称将会作为index的name。

append添加list

data = pd.DataFrame()
  a = [1,2,3]
  data = data.append(a)
  print(data)

如果list是一维的,则是以列的形式来进行添加,如果list是二维的则是以行的形式进行添加的,如果是三维的则只添加一个值

  data = pd.DataFrame()
  a = [[[1,2,3]]]
  data = data.append(a)
  print(data)

注意:在多次使用append方法追加数据的时候,可能会出现相同的index

 data = pd.DataFrame()
  a = [[1,2,3],[4,5,6]]
  data = data.append(a)
  a = [[7,8,9],[10,11,12]]
  data = data.append(a)
  print(data)

如果想要添加的index不出现重复的情况,可以通过设置ignore_index=True来避免

  data = pd.DataFrame()
  a = [[1,2,3],[4,5,6]]
  data = data.append(a,ignore_index=True)
  a = [[7,8,9],[10,11,12]]
  data = data.append(a,ignore_index=True)
  print(data)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pandas dataframe的合并实现(append, merge, concat)

    创建2个DataFrame: >>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321')) >>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543')) >>> df3 = pd.DataFrame(np.ones((4, 4))*3, col

  • 详细介绍pandas的DataFrame的append方法使用

    官方文档介绍链接:append方法介绍 DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=None) 功能说明:向dataframe对象中添加新的行,如果添加的列名不在dataframe对象中,将会被当作新的列进行添加 other:DataFrame.series.dict.list这样的数据结构 ignore_index:默认值为False,如果为True则不使用index标签 verify_int

  • pandas修改DataFrame列名的方法

    在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

  • 使用pandas的DataFrame的plot方法绘制图像的实例

    使用了pandas的Series方法绘制图像体验之后感觉直接用matplotlib的功能好用了不少,又试用了DataFrame的方法之后发现这个更加人性化. 写代码如下: from pandas import Series,DataFrame from numpy.random import randn import numpy as np import matplotlib.pyplot as plt df = DataFrame(randn(10,5),columns=['A','B','C

  • 从列表或字典创建Pandas的DataFrame对象的方法

    介绍 每当我使用pandas进行分析时,我的第一个目标是使用众多可用选项中的一个将数据导入Pandas的DataFrame . 对于绝大多数情况下,我使用的 read_excel , read_csv 或 read_sql . 但是,有些情况下我只需要几行数据或包含这些数据里的一些计算. 在这些情况下,了解如何从标准python列表或字典创建DataFrames会很有帮助. 基本过程并不困难,但因为有几种不同的选择,所以有助于理解每种方法的工作原理. 我永远记不住我是否应该使用 from_dic

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • Pandas中DataFrame数据删除详情

    目录 1.根据默认的行列索引操作 1.1行删除 1.2列删除 2.根据自定义的行列索引操作 2.1行删除 2.2列删除 本文介绍Pandas中DataFrame数据删除,主要使用drop.del方式. # drop函数的参数解释 drop( self, labels=None, # 就是要删除的行列的标签,用列表给定; axis=0, # axis是指处哪一个轴,0为行(默认),1为列; index=None, # index是指某一行或者多行 columns=None, # columns是指

  • 详细介绍在pandas中创建category类型数据的几种方法

    在pandas中创建category类型数据的几种方法之详细攻略 T1.直接创建 category类型数据 可知,在category类型数据中,每一个元素的值要么是预设好的类型中的某一个,要么是空值(np.nan). T2.利用分箱机制(结合max.mean.min实现二分类)动态添加 category类型数据 输出结果 [NaN, 'medium', 'medium', 'fat'] Categories (2, object): ['medium', 'fat']    name    ID

  • Python pandas DataFrame数据拼接方法

    目录 前言 DataFrame数据拼接方法一:使用.append()方法. DataFrame数据拼接方法二:使用.concat()方法. 补充:Python同时合并多个DataFrame 总结 前言 在pandas模块中,通常我们都需要对类型为DataFrame的数据进行操作,其中最为常见的操作便是拼接了.比如我们将两个Excel表格中的数据读入,随后拼接完成后保存进一个新的Excel表格文件中.之前查找了相关的博客, 发现网络上鱼龙混杂.有些代码完全无法执行,为了提高效率,这里做一个详细地记

随机推荐