Python中的十大图像处理工具(小结)

Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。本文主要介绍了一些简单易懂最常用的Python图像处理库。

当今世界充满了各种数据,而图像是其中高的重要组成部分。然而,若想其有所应用,我们需要对这些图像进行处理。图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面。

图像处理中的常见任务包括显示图像,基本操作(如裁剪、翻转、旋转等),图像分割,分类和特征提取,图像恢复和图像识别等。 Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具。

让我们看一下用于图像处理任务的一些常用Python库。

1. scikit Image

scikit-image是一个基于numpy数组的开源Python包。 它实现了用于研究、教育和工业应用的算法和实用程序。 即使是对于那些刚接触Python的人,它也是一个相当简单的库。 此库代码质量非常高并已经过同行评审,是由一个活跃的志愿者社区编写的。

使用说明文档:https://scikit-image.org/docs/stable/user_guide.html

用法举例:图像过滤、模版匹配

可使用“skimage”来导入该库。大多数功能都能在子模块中找到。

import matplotlib.pyplot as plt
%matplotlib inline
from skimage import data,filters
image = data.coins()
# ... or any other NumPy array!
edges = filters.sobel(image)
plt.imshow(edges, cmap='gray') 

模版匹配(使用match_template函数)

gallery上还有更多例子。

https://scikit-image.org/docs/dev/auto_examples/

2. Numpy

Numpy是Python编程的核心库之一,支持数组结构。 图像本质上是包含数据点像素的标准Numpy数组。 因此,通过使用基本的NumPy操作——例如切片、脱敏和花式索引,可以修改图像的像素值。 可以使用skimage加载图像并使用matplotlib显示。

使用说明文档:http://www.numpy.org/

用法举例:使用Numpy来对图像进行脱敏处理

import numpy as np
from skimage import data
import matplotlib.pyplot as plt
%matplotlib inline
image = data.camera()
type(image)
numpy.ndarray #Image is a numpy array
mask = image < 87
image[mask]=255
plt.imshow(image, cmap='gray') 

3. Scipy

scipy是Python的另一个核心科学模块,就像Numpy一样,可用于基本的图像处理和处理任务。值得一提的是,子模块scipy.ndimage提供了在n维NumPy数组上运行的函数。 该软件包目前包括线性和非线性滤波、二进制形态、B样条插值和对象测量等功能。

使用说明文档:

https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution

用法举例:使用SciPy的高斯滤波器对图像进行模糊处理

from scipy import misc,ndimage
face = misc.face()
blurred_face = ndimage.gaussian_filter(face, sigma=3)
very_blurred = ndimage.gaussian_filter(face, sigma=5)
#Results
plt.imshow(<image to be displayed>) 

4. PIL/ Pillow

PIL (Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开、处理和保存许多不同图像文件格式的支持。 然而,它的发展停滞不前,其最后一次更新还是在2009年。幸运的是, PIL有一个正处于积极开发阶段的分支Pillow,它非常易于安装。Pillow能在所有主要操作系统上运行并支持Python 3。该库包含基本的图像处理功能,包括点操作、使用一组内置卷积内核进行过滤以及颜色空间转换。

使用说明文档:https://pillow.readthedocs.io/en/3.1.x/index.html

用法举例:使用ImageFilter增强Pillow中的图像

from PIL import Image, ImageFilter
#Read image
im = Image.open( 'image.jpg' )
#Display image
im.show()
from PIL import ImageEnhance
enh = ImageEnhance.Contrast(im)
enh.enhance(1.8).show("30% more contrast") 

5. OpenCV-Python

OpenCV( 开源计算机视觉库,Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的python API。 OpenCV-Python不仅速度快(因为后台由用C / C ++编写的代码组成),也易于编码和部署(由于前端的Python包装器)。 这使其成为执行计算密集型计算机视觉程序的绝佳选择。

使用说明文档:https://github.com/abidrahmank/OpenCV2-Python-Tutorials

用法举例:使用Pyramids创建一个名为'Orapple'的新水果的功能

6. SimpleCV

SimpleCV也是用于构建计算机视觉应用程序的开源框架。 通过它可以访问如OpenCV等高性能的计算机视觉库,而无需首先了解位深度、文件格式或色彩空间等。学习难度远远小于OpenCV,并且正如他们的标语所说,“ 它使计算机视觉变得简单 ”。支持SimpleCV的一些观点是:

即使是初学者也可以编写简单的机器视觉测试

摄像机、视频文件、图像和视频流都可以交互操作

使用说明文档:https://simplecv.readthedocs.io/en/latest/

用法举例

7. Mahotas

Mahotas是另一个用于Python的计算机视觉和图像处理库。 它包含传统的图像处理功能(如滤波和形态学操作)以及用于特征计算的更现代的计算机视觉功能(包括兴趣点检测和局部描述符)。 该接口使用Python,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行很快,它的代码很简单,(对其它库的)依赖性也很小。 建议阅读他们的官方文档以了解更多内容。

使用说明文档:

https://mahotas.readthedocs.io/en/latest/install.html

用法举例

Mahotas库使用简单的代码来完成工作。 对于“ 寻找Wally ”的问题,Mahotas完成的得很好,而且代码量非常小。

8. SimpleITK

ITK(Insight Segmentation and Registration Toolkit)是一个开源的跨平台系统,为开发人员提供了一整套用于图像分析的软件工具。 其中, SimpleITK是一个建立在ITK之上的简化层,旨在促进其在快速原型设计、教育以及脚本语言中的使用。SimpleITK是一个包含大量组件的图像分析工具包,支持一般的过滤操作、图像分割和配准。 SimpleITK本身是用C++编写的,但可用于包括Python在内的大量编程语言。

使用说明文档:https://github.com/hhatto/pgmagick

这里有大量说明了如何使用SimpleITK进行教育和研究活动的Jupyter notebook。notebook中演示了如何使用SimpleITK进行使用Python和R编程语言的交互式图像分析。

用法举例:

下面的动画是使用SimpleITK和Python创建的可视化的严格CT / MR配准过程。

9. pgmagick

pgmagick是GraphicsMagick库基于Python的包装器。GraphicsMagick 图像处理系统有时被称为图像处理的瑞士军刀。它提供了强大而高效的工具和库集合,支持超过88种主要格式图像的读取、写入和操作,包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF等重要格式。

使用说明文档:https://github.com/hhatto/pgmagick

用法举例:图片缩放、边缘提取

图片缩放

边缘提取

10. Pycairo

Pycairo是图形库cairo的一组python绑定。 Cairo是一个用于绘制矢量图形的2D图形库。 矢量图形很有趣,因为它们在调整大小或进行变换时不会降低清晰度。Pycairo库可以从Python调用cairo命令。

使用说明文档:https://github.com/pygobject/pycairo

用法:Pycairo可以绘制线条、基本形状和径向渐变

以上就是一些免费的优秀图像处理Python库。有些很知名,你可能已经知道或者用过,有些可能对你来说还是新的。那正好现在就上手操作一下,试一试吧。希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python Image模块基本图像处理操作小结

    本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa

  • python数字图像处理之骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. morphology子模块提供了两个函数用于骨架提取,分别是Skeletonize()函数和medial_axis()函数.我们先来看Skeletonize()函数. 格式为:skimage.morphology.skeletonize(image) 输入和输出都是一幅二值图像. 例1: from s

  • python数字图像处理之高级滤波代码详解

    本文提供许多的滤波方法,这些方法放在filters.rank子模块内. 这些方法需要用户自己设定滤波器的形状和大小,因此需要导入morphology模块来设定. 1.autolevel 这个词在photoshop里面翻译成自动色阶,用局部直方图来对图片进行滤波分级. 该滤波器局部地拉伸灰度像素值的直方图,以覆盖整个像素值范围. 格式:skimage.filters.rank.autolevel(image, selem) selem表示结构化元素,用于设定滤波器. from skimage im

  • Python图像处理之颜色的定义与使用分析

    本文实例讲述了Python图像处理之颜色的定义与使用.分享给大家供大家参考,具体如下: python中的颜色相关的定义在matplotlib模块中,为方便使用,这里给大家展示一下在这个模块中都定义了哪些选颜色. 1.颜色名称的导出 导出代码如下: import matplotlib for name, hex in matplotlib.colors.cnames.iteritems(): print(name, hex) 导出结果如下: names = { 'aliceblue':      

  • python数字图像处理之高级形态学处理

    形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一个凸多边形,这个凸多边形将图片中所有的白色像素点都包含在内. 函数为: skimage.morphology.convex_hull_image(image) 输入为二值图像,输出一个逻辑二值图像.在凸包内的点为True, 否则为False 例: import matplotlib.pyplot as plt from skimage import d

  • python数字图像处理实现直方图与均衡化

    在图像处理中,直方图是非常重要,也是非常有用的一个处理要素. 在skimage库中对直方图的处理,是放在exposure这个模块中. 1.计算直方图 函数:skimage.exposure.histogram(image,nbins=256) 在numpy包中,也提供了一个计算直方图的函数histogram(),两者大同小义. 返回一个tuple(hist, bins_center), 前一个数组是直方图的统计量,后一个数组是每个bin的中间值 import numpy as np from s

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

  • python图像处理之反色实现方法

    本文实例讲述了python图像处理之反色实现方法.分享给大家供大家参考.具体如下: 我们先加载一个8位灰度图像 每一个像素对应的灰度值从0-255 则只需要读取每个像素的灰度值A,再将255-A写入 这样操作一遍后,图像就会反色了 这里运行环境为: Python为:Python2.7.6 OpenCV2.4.10版(可到http://sourceforge.net/projects/opencvlibrary/files/opencv-win/下载) numpy为:numpy-1.9.1-win

  • Python图像处理之简单画板实现方法示例

    本文实例讲述了Python图像处理之简单画板实现方法.分享给大家供大家参考,具体如下: Python图像处理也是依赖opencv的Python接口实现的,Python语言简单易懂,简洁明了.本次实现画板涂鸦,一个是在里面画矩形,还有画线.其他也都可以扩展,本案例只做例程,思路是对鼠标事件的处理,以及滚动条调节颜色处理.鼠标事件就包含有左键按下,以及释放事件的处理. import cv2 import numpy as np # null function def nothing(x): pass

  • Python中的十大图像处理工具(小结)

    Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具.本文主要介绍了一些简单易懂最常用的Python图像处理库. 当今世界充满了各种数据,而图像是其中高的重要组成部分.然而,若想其有所应用,我们需要对这些图像进行处理.图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面. 图像处理中的常见任务包括显示图像,基本操作(如裁剪.翻转.旋转等),图像分割,分类和特征提取,图像恢复和图像识别等. Pyt

  • python中的十大%占位符对应的格式化的使用方法

    字符串格式化里的符号很多,本文详细的介绍一下,以便随时查找. %s :字符串的格式化,也是最常用的%d :格式化整数,也比较常用%c :格式化字符及ASCII码%u :格式化无符号整型%f :格式化浮点数,可以指定小数后面的精度%e :使用科学计数法格式化浮点数%o :格式化无符号八进制数%x :格式化无符号十六进制数%p :十六进制数格式化变量地址%g :%e和%f的简写 演示一下各个占位符格式化使用时的效果 '''格式化字符串''' var_s = '%s' % '我是一个字符串' prin

  • Python 数据结构之十大经典排序算法一文通关

    目录 1.冒泡排序 算法演示 算法步骤 算法实现 2.选择排序 算法演示 算法步骤 算法实现 3.简单插入排序 算法演示 算法步骤 算法实现 4.希尔排序 算法演示 算法步骤 算法实现 5.归并排序 算法演示 算法步骤 算法实现 6.快速排序 算法演示 算法步骤 算法实现 7.堆排序 算法演示 算法步骤 算法实现 8.计数排序 算法演示 算法步骤 算法实现 9.桶排序 算法演示 算法步骤 算法实现 10.基数排序 算法演示 算法步骤 算法实现 一文搞掂十大经典排序算法 今天整理一下十大经典排序算

  • python中判断集合范围的方法小结

    我们在比较数值大小的时候,会使用一些比较符号来进行判断.在python集合中也有这样的比较,但有一点要注意的是,我们比较的是集合之间的包容性,而不是简单数值之间的大小比较,这点在文章的开头就进行明确,也是对于我们python初学者的提醒. 集合可以使用大于(>).小于(<).大于等于(>=).小于等于(<=).等于(==).不等于(!=)来判断某个集合是否完全包含于另一个集合,也可以使用子父集判断函数. 定义三个集合s1,s2,s3: >>> s1=set([1,

  • Python中re模块的元字符使用小结

    目录 类别1:匹配单个字符的元字符 方括号( [] ) 字符集 点 ( . ) 通配符 \w 和 \W 单词字符匹配 \d 和 \D 字符十进制数字匹配 \s 和 \S 字符空格匹配 混合使用 \w, \W, \d, \D, \s, 和\S 类别2:转义元字符 反斜杠 ( \ ) 转义元字符 类别3:锚点 $ 和\Z 字符串的结尾匹配项 \b 和 \B 单词匹配 类别4:量词 * 匹配前面的子表达式零次或多次 + 匹配前面的子表达式一次或多次 ? 匹配前面的子表达式零次或一次 .*?.+?.??

  • Python中输出ASCII大文字、艺术字、字符字小技巧

    复制代码 代码如下: display text in large ASCII art fonts 显示大ASCII艺术字体 这种东西在源码声明或者软件初始化控制台打印时候很有用. 例如下图: 这是查看HTML源码中截图而来,看到这种字体的网站名称,很cool,下面就介绍一下Python中如何输出这种字符字. 复制代码 代码如下: $ sudo apt-get install figlet $ figlet orangleliu                             _     

  • Python中的一些陷阱与技巧小结

    Python是一种被广泛使用的强大语言,让我们深入这种语言,并且学习一些控制语句的技巧,标准库的窍门和一些常见的陷阱. Python(和它的各种库)非常庞大.它被用于系统自动化.web应用.大数据.数据分析及安全软件.这篇文件旨在展示一些知之甚少的技巧,这些技巧将带领你走上一条开发速度更快.调试更容易并且充满趣味的道路. 学习Python和学习所有其他语言一样,真正有用的资源不是各个语言繁琐的超大官方文档,而是使用常用语法.库和Python社区共享知识的能力. 探索标准数据类型 谦逊的enume

  • Python中元组的概念及应用小结

    目录 1.元组的概念 2.元组的基本使用 2.1.定义一个元组 2.2.定义一个空元组 2.3.元组的元素是不可变的 2.4.当元组中的元素是一个列表时列表中的元素可变 2.5.当元组中只定义一个元素时的注意事项 3.列表的所有操作同样适用于元组 4.就是想修改元组中的某个元素 1.元组的概念 Python中的元组和列表很相似,元组也是Python语言提供的内置数据结构之一,可以在代码中直接使用. 元组和列表就像是一个孪生兄弟,表现形式和使用上都大差不差,但是两者又有非常明显的区别: 元组是用小

  • Python中字典的基础知识归纳小结

    定义一个字典 >>> d = {"server":"mpilgrim", "database":"master"} 1 >>> d {'server': 'mpilgrim', 'database': 'master'} >>> d["server"] 2 'mpilgrim' >>> d["database"] 3

  • python中copy()与deepcopy()的区别小结

    前言 copy()与deepcopy()之间的区分必须要涉及到python对于数据的存储方式. 深复制被复制对象完全再复制一遍作为独立的新个体单独存在.所以改变原有被复制对象不会对已经复制出来的新对象产生影响. 浅复制并不会产生一个独立的对象单独存在,他只是将原有的数据块打上一个新标签,所以当其中一个标签被改变的时候,数据块就会发生变化,另一个标签也会随之改变. import copy origin = [1, 2, [3, 4]] #origin 里边有三个元素:1, 2,[3, 4] cop

随机推荐