Python使用Pickle库实现读写序列操作示例

本文实例讲述了Python使用Pickle库实现读写序列操作。分享给大家供大家参考,具体如下:

简介

pickle模块实现了用于对Python对象结构进行序列化和反序列化的二进制协议。“Pickling"是将Python对象转换为字节流的过程,“unpickling"是反向操作,由此字节流二进制文件或字节对象)转换回对象结构。

模块方法

pickle.dump(obj, file, protocol=None, *, fix_imports=True)
将obj以二进制形式写入file-object文件

pickle.dumps(obj, protocol=None, *, fix_imports=True)
将obj编译为二进制对象

pickle.load(file, *, fix_imports=True, encoding="ASCII", errors="strict")
dump的反向操作

pickle.loads(bytes_object, *, fix_imports=True, encoding="ASCII", errors="strict")
dumps的反向操作

pickle

而以二进制读取的一个妙用就是保存matplotlib的交互式图片页面:

保存交互式图片页面

import matplotlib.pyplot as plt
import pickle as pl
#调用matplotlib的figure对象
fig = plt.figure()
x = [1,2,3,4,5]
y = [1,2,3,4,5]
plt.plot(x,y)
#序列化figure对象,并保存
pl.dump(fig,open('C:/Users/Administrator/Desktop/fig.pickle','wb'))

读取交互式页面:

import matplotlib.pyplot as plt
import pickle as pl
# 载入序列化文件
fig = pl.load(open('C:/Users/Administrator/Desktop/fig.pickle','rb'))
plt.show()
# 获得图片信息
print(fig.axes[0].lines[0].get_data())

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python函数使用技巧总结》、《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python序列化基础知识(json/pickle)

    我们把对象(变量)从内存中变成可存储的过程称之为序列化,比如XML,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思. 序列化后,就可以把序列化后的内容写入磁盘,或者通过网络传输到其他服务器上,反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling json(JavaScript Object Notation) 一种轻量级的数据交换格式.它基于ECMAScript的

  • python3.6使用pickle序列化class的方法

    如下所示: from library.connecter.database.mongo import Op_Mongo a = pickle.dumps(Op_Mongo) #序列化 b = pickle.loads(a) #反序列化 以上这篇python3.6使用pickle序列化class的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • Python序列化与反序列化pickle用法实例

    这篇文章主要介绍了Python序列化与反序列化pickle用法实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 要将Python对象作为一个文件的形式保存到磁盘,就叫序列化: 当我们需要用到这个这对象,再从磁盘加载这个对象,就叫反序列化 Python自带的pickle可以帮我们实现,pickle这个单词是咸菜的意思,咸菜耐储存,是不是很形象呀? 对象的存储分为两步: 1.将对象在内存中的数据抓取取来,转换成一个有序的文本,这一步就是序列化 2

  • Python 序列化 pickle/cPickle模块使用介绍

    Python序列化的概念很简单.内存里面有一个数据结构,你希望将它保存下来,重用,或者发送给其他人.你会怎么做?这取决于你想要怎么保存,怎么重用,发送给谁.很多游戏允许你在退出的时候保存进度,然后你再次启动的时候回到上次退出的地方.(实际上,很多非游戏程序也会这么干)在这种情况下,一个捕获了当前进度的数据结构需要在你退出的时候保存到硬盘上,接着在你重新启动的时候从硬盘上加载进来. Python标准库提供pickle和cPickle模块.cPickle是用C编码的,在运行效率上比pickle要高,

  • python使用cPickle模块序列化实例

    本文实例讲述了python使用cPickle模块序列化的方法,分享给大家供大家参考. 具体方法如下: import cPickle data1 = ['abc',12,23] #几个测试数据 data2 = {1:'aaa',"b":'dad'} data3 = (1,2,4) output_file = open("a.txt",'w') cPickle.dump(data1,output_file) cPickle.dump(data2,output_file)

  • 详解Python之数据序列化(json、pickle、shelve)

    一.前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样.很多时候我们会有这样的需求: 把内存中的各种数据类型的数据通过网络传送给其它机器或客户端: 把内存中的各种数据类型的数据保存到本地磁盘持久化: 2.数据格式 如果要将一个系统内的数据通过网络传输给其它系统或客户端,我们通常都需要先把这些数据转化为字符串或字节串,而且需要规定一种统一的数据格式才能让数据接收端正确解析并理解这些数据的含义.XML 是早期被

  • Python使用pickle模块实现序列化功能示例

    本文实例讲述了Python使用pickle模块实现序列化功能.分享给大家供大家参考,具体如下: Python内置的pickle模块能够将Python对象序列成字节流,也可以把字节流反序列成对象. import pickle class Student: def __init__(self, name, age): self.name = name self.age = age def say(self): print("I am", self.name) >>> t

  • Python pickle类库介绍(对象序列化和反序列化)

    一.pickle pickle模块用来实现python对象的序列化和反序列化.通常地pickle将python对象序列化为二进制流或文件.   python对象与文件之间的序列化和反序列化: 复制代码 代码如下: pickle.dump() pickle.load() 如果要实现python对象和字符串间的序列化和反序列化,则使用: 复制代码 代码如下: pickle.dumps() pickle.loads() 可以被序列化的类型有: * None,True 和 False; * 整数,浮点数

  • Python使用Pickle库实现读写序列操作示例

    本文实例讲述了Python使用Pickle库实现读写序列操作.分享给大家供大家参考,具体如下: 简介 pickle模块实现了用于对Python对象结构进行序列化和反序列化的二进制协议."Pickling"是将Python对象转换为字节流的过程,"unpickling"是反向操作,由此字节流二进制文件或字节对象)转换回对象结构. 模块方法 pickle.dump(obj, file, protocol=None, *, fix_imports=True) 将obj以二

  • Python 中Pickle库的使用详解

    在"通过简单示例来理解什么是机器学习"这篇文章里提到了pickle库的使用,本文来做进一步的阐述. 那么为什么需要序列化和反序列化这一操作呢? 1.便于存储.序列化过程将文本信息转变为二进制数据流.这样就信息就容易存储在硬盘之中,当需要读取文件的时候,从硬盘中读取数据,然后再将其反序列化便可以得到原始的数据.在Python程序运行中得到了一些字符串.列表.字典等数据,想要长久的保存下来,方便以后使用,而不是简单的放入内存中关机断电就丢失数据.python模块大全中的Pickle模块就派

  • Python使用pickle进行序列化和反序列化的示例代码

    一.说明 早上看到Python使用pickle进行序列化和反序列化,然后发现面临的一个获取不到返回值的框架,似乎可以通过在框架中先序列化,然后在外部进行反序列化的方法来实现.就研究了一下pickle库的具体使用. 本身也没什么复杂,一方面还是怕忘记,另一方面是自从学Java听到反序化这个词开始就有一种莫明其妙的恐具感总觉得是什么高大上的东西.Java反序列化可参见"Java反序列化漏洞实现". 二.代码实现 import pickle class BeSerializing: def

  • Python使用imagehash库生成ahash算法的示例代码

    目录 知识点补充 前言 生成 ahash 向量数据库 创建集合 插入 ahash 到 milvus 查询 ahash from milvus 知识点补充 aHash算法 Hash算法进行图片相似度识别的本质,就是将图片进行Hash转化,生成一组二进制数字,然后通过比较不同图片的Hash值距离找出相似图片.aHash中文叫平均哈希算法,顾名思义,在进行转化过程中将用到像素均值. 基本原理: 1.缩小尺寸.这样做会去除图片的细节,只保留结构.明暗等基本信息,目的是统一图片大小,保证后续图片都有相同长

  • Python使用pickle模块存储数据报错解决示例代码

    本文研究的主要是Python使用pickle模块存储数据报错解决方法,以代码的形式展示,具体如下. 首先来了解下pickle模块 pickle提供了一个简单的持久化功能.可以将对象以文件的形式存放在磁盘上. pickle模块只能在python中使用,python中几乎所有的数据类型(列表,字典,集合,类等)都可以用pickle来序列化, pickle序列化后的数据,可读性差,人一般无法识别. 接下来我们看下Python使用pickle模块存储数据报错解决方法. 代码: # 写入错误 TypeEr

  • python爬虫lxml库解析xpath网页过程示例

    目录 前言 (一)xpath是什么 (二)xpath的基本语法 路径查询. (三) lxml库 (四)lxml库的使用 导入lxml.etree (五)实例演示 前言 在我们抓取网页内容的时候,通常是抓取一整个页面的内容,而我们仅仅只是需要该网页中的部分内容,那该如何去提取呢?本章就带你学习xpath插件的使用.去对网页的内容进行提取. (一)xpath是什么 xpath是一门在XML文档中查找信息的语言,xpath可用来在XML 文档中对元素和属性进行遍历,主流的浏览器都支持xpath,因为h

  • Python使用Crypto库实现加密解密的示例详解

    目录 一:crypto库安装 二:python使用crypto 1:crypto的加密解密组件des.py 2:crypto组件使用 知识补充 一:crypto库安装 pycrypto,pycryptodome是crypto第三方库,pycrypto已经停止更新三年了,所以不建议安装这个库:pycryptodome是pycrypto的延伸版本,用法和pycrypto 是一模一样的:所以只需要安装pycryptodome就可以了 pip install pycryptodome 二:python使

  • python读写文件操作示例程序

    文件操作示例 复制代码 代码如下: #输入文件f = open(r'D:\Python27\pro\123.bak') #输出文件fw = open(r'D:\Python27\pro\123e.bak','w')#按行读出所有文本lines = f.readlines()num = -1for line in lines:    str = '@SES/%i/' %num    line = line.replace('@SES/1/',str)    num = num + 1    #写入

  • python读写配置文件操作示例

    本文实例讲述了python读写配置文件操作.分享给大家供大家参考,具体如下: 在用编译型语言写程序的时候,很多时候用到配置文件,作为一个约定的规则,一般用 ini 文件作为配置文件,当然不是绝对的,也可能是XML等文件. 配置文件是配置的参数是在程序启动,或运行时需要的,作为编译型语言,几乎都会用到,但python是动态语言.动态语言的一大特性是解析执行的.所以很多情况下需要配置的参数,通常会被直接写在脚本里.一个常用的做法,就是单独用一个文件来作为配置文件,比如我们经常接触的 django ,

  • Python3使用pandas模块读写excel操作示例

    本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

随机推荐