给你选择Python语言实现机器学习算法的三大理由

基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰;(2) 易于操作纯文本文件;(3) 使用广泛,存在大量的开发文档。

可执行伪代码

Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code)。默认安装的Python开发环境已经附带了很多高级数据类型,如列表、元组、字典、集合、队列等,无需进一步编程就可以使用这些数据类型的操作。使用这些数据类型使得实现抽象的数学概念非常简单。此外,读者还可以使用自己熟悉的编程风格,如面向对象编程、面向过程编程、或者函数式编程。不熟悉Python的读者可以参阅附录A,该附录详细介绍了Python语言、Python使用的数据类型以及安装指南。

Python语言处理和操作文本文件非常简单,非常易于处理非数值型数据。Python语言提供了丰富的正则表达式函数以及很多访问Web页面的函数库,使得从HTML中提取数据变得非常简单直观。

Python比较流行

Python语言使用广泛,代码范例也很多,便于读者快速学习和掌握。此外,在开发实际应用程序时,也可以利用丰富的模块库缩短开发周期。

在科学和金融领域,Python语言得到了广泛应用。SciPy和NumPy等许多科学函数库都实现了向量和矩阵操作,这些函数库增加了代码的可读性,学过线性代数的人都可以看懂代码的实际功能。另外,科学函数库SciPy和NumPy使用底层语言(C和Fortran)编写,提高了相关应用程序的计算性能。本书将大量使用Python的NumPy。

Python的科学工具可以与绘图工具Matplotlib协同工作。Matplotlib可以绘制2D、3D图形,也可以处理科学研究中经常使用到的图形,所以本书也将大量使用Matplotlib。

Python开发环境还提供了交互式shell环境,允许用户开发程序时查看和检测程序内容。

Python开发环境将来还会集成Pylab模块,它将NumPy、SciPy和Matplotlib合并为一个开发环境。在本书写作时,Pylab还没有并入Python环境,但是不远的将来我们肯定可以在Python开发环境找到它。

Python语言的特色

诸如MATLAB和Mathematica等高级程序语言也允许用户执行矩阵操作,MATLAB甚至还有许多内嵌的特征可以轻松地构造机器学习应用,而且MATLAB的运算速度也很快。然而MATLAB的不足之处是软件费用太高,单个软件授权就要花费数千美元。虽然也有适合MATLAB的第三方插件,但是没有一个有影响力的大型开源项目。

Java和C等强类型程序设计语言也有矩阵数学库,然而对于这些程序设计语言来说,最大的问题是即使完成简单的操作也要编写大量的代码。程序员首先需要定义变量的类型,对于Java来说,每次封装属性时还需要实现getter和setter方法。另外还要记着实现子类,即使并不想使用子类,也必须实现子类方法。为了完成一个简单的工作,我们必须花费大量时间编写了很多无用冗长的代码。Python语言则与Java和C完全不同,它清晰简练,而且易于理解,即使不是编程人员也能够理解程序的含义,而Java和C对于非编程人员则像天书一样难于理解。

所有人在小学二年级已经学会了写作,然而大多数人必须从事其他更重要的工作。

——鲍比·奈特

也许某一天,我们可以在这句话中将“写作”替代为“编写代码”,虽然有些人对于编写代码很感兴趣,但是对于大多数人来说,编程仅是完成其他任务的工具而已。Python语言是高级编程语言,我们可以花费更多的时间处理数据的内在含义,而无须花费太多精力解决计算机如何得到数据结果。Python语言使得我们很容易表达自己的目的。

Python语言的缺点

Python语言唯一的不足是性能问题。Python程序运行的效率不如Java或者C代码高,但是我们可以使用Python调用C编译的代码。这样,我们就可以同时利用C和Python的优点,逐步地开发机器学习应用程序。我们可以首先使用Python编写实验程序,如果进一步想要在产品中实现机器学习,转换成C代码也不困难。如果程序是按照模块化原则组织的,我们可以先构造可运行的Python程序,然后再逐步使用C代码替换核心代码以改进程序的性能。C++ Boost库就适合完成这个任务,其他类似于Cython和PyPy的工具也可以编写强类型的Python代码,改进一般Python程序的性能。

如果程序的算法或者思想有缺陷,则无论程序的性能如何,都无法得到正确的结果。如果解决问题的思想存在问题,那么单纯通过提高程序的运行效率,扩展用户规模都无法解决这个核心问题。从这个角度来看,Python快速实现系统的优势就更加明显了,我们可以快速地检验算法或者思想是否正确,如果需要,再进一步优化代码。

注:本文摘自《机器学习实战》

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 11月编程语言排行榜 Python逆袭C#上升到第4

    TIOBE 11 月编程语言排行榜,Python 逆袭C# 曾经有一段时间,脚本语言因其易于编写和易于运行的特性,被预测在未来将发展强大.因此,Perl,Python,PHP 和 Ruby 等语言在当时非常流行.而今天看来,似乎只有 Python 的发展很强势,其他脚本语言都在逐渐走出前 20 名,或排名趋于下滑. 在前 20 名的排行中,可以看出 Python 已经超越 C#,上升至第 4 的位置.无论在哪个榜单中 Python 都是保持着非同寻常的增长速度,为什么 Python 增长的这么快

  • 机器学习python实战之手写数字识别

    看了上一篇内容之后,相信对K近邻算法有了一个清晰的认识,今天的内容--手写数字识别是对上一篇内容的延续,这里也是为了自己能更熟练的掌握k-NN算法. 我们有大约2000个训练样本和1000个左右测试样本,训练样本所在的文件夹是trainingDigits,测试样本所在的文件夹是testDigits.文本文件中是0~9的数字,但是是用二值图表示出来的,如图.我们要做的就是使用训练样本训练模型,并用测试样本来检测模型的性能. 首先,我们需要将文本文件中的内容转化为向量,因为图片大小是32*32,所以

  • 机器学习python实战之决策树

    决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法. 每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念. 一.信息增益 划分数据集的原则是:将无序的数据变的有序.在划分数据集之前之后信息发生的变化称为信息增益.知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择.首先我们先来

  • 人工智能最火编程语言 Python大战Java!

    开发者到底应该学习哪种编程语言才能获得机器学习或数据科学这类工作呢?这是一个非常重要的问题.我们在许多论坛上都有讨论过.现在,我可以提供我自己的答案并解释原因,但我们先看一些数据.毕竟,这是机器学习者和数据科学家应该做的事情:看数据,而不是看观点. 话不多说,上数据.我搜索了与"机器学习"和"数据科学"一起使用的技能,搜索选项包括编程语言Java.C.C++和JavaScript.然后还包括了Python和R,因为我们知道它在机器学习和数据科学方面很受欢迎,当然还有

  • python机器学习库常用汇总

    汇总整理一套Python网页爬虫,文本处理,科学计算,机器学习和数据挖掘的兵器谱. 1. Python网页爬虫工具集 一个真实的项目,一定是从获取数据开始的.无论文本处理,机器学习和数据挖掘,都需要数据,除了通过一些渠道购买或者下载的专业数据外,常常需要大家自己动手爬数据,这个时候,爬虫就显得格外重要了,幸好,Python提供了一批很不错的网页爬虫工具框架,既能爬取数据,也能获取和清洗数据,也就从这里开始了: 1.1 Scrapy 鼎鼎大名的Scrapy,相信不少同学都有耳闻,课程图谱中的很多课

  • 人机交互程序 python实现人机对话

    自己随便写了一个人机交互的程序.不存在任何智能,只是可以识别姓名,可以记录对话内容,并保存等到下一次交互时加载. (推荐面向对象版本) # hello.py # 这是老早写的.不过今天加入了Pickle,然后润色了一下. # 可能有点无聊(不推荐使用) import pickle import os.path def search(x, data): for k, d in enumerate(data): if x == d['name']: return k, d def save_data

  • AI人工智能 Python实现人机对话

    在人工智能进展的如火如荼的今天,我们如果不尝试去接触新鲜事物,马上就要被世界淘汰啦~ 本文拟使用Python开发语言实现类似于WIndows平台的"小娜",或者是IOS下的"Siri".最终达到人机对话的效果. [实现功能] 这篇文章将要介绍的主要内容如下: 1.搭建人工智能--人机对话服务端平台 2.实现调用服务端平台进行人机对话交互 [实现思路] AIML AIML由Richard Wallace发明.他设计了一个名为 A.L.I.C.E. (Artificia

  • python、java等哪一门编程语言适合人工智能?

    谷歌的AI击败了一位围棋大师,是一种衡量人工智能突然的快速发展的方式,也揭示了这些技术如何发展而来和将来可以如何发展. 人工智能是一种未来性的技术,目前正在致力于研究自己的一套工具.一系列的进展在过去的几年中发生了:无事故驾驶超过300000英里并在三个州合法行驶迎来了自动驾驶的一个里程碑:IBM Waston击败了Jeopardy两届冠军;统计学习技术从对消费者兴趣到以万亿记的图像的复杂数据集进行模式识别.这些发展必然提高了科学家和巨匠们对人工智能的兴趣,这也使得开发者们了解创建人工智能应用的

  • Python如何快速上手? 快速掌握一门新语言的方法

    那么Python如何快速上手?找来了一篇广受好评的新语言学习方法介绍,供大家参考. 听说,你决定要为你的 "技能树" 再添加一门特定的编程语言.那该怎么办呢? 在这篇文章中,作者提出了 12 项关于学习技术的建议.记住每个人学习的方式都不一样.其中一些可能对你十分有用,而其他的则可能无法满足你的需求.如果你开始担心一个策略,请尝试另一个策略并看看它哪里适合你. 1. 将其与类似的语言进行比较.当你首次观看有关该语言的第一个教程或阅读代码时,请尝试猜测该语言的每个部分将会做什么,并检查你

  • 给你选择Python语言实现机器学习算法的三大理由

    基于以下三个原因,我们选择Python作为实现机器学习算法的编程语言:(1) Python的语法清晰:(2) 易于操作纯文本文件:(3) 使用广泛,存在大量的开发文档. 可执行伪代码 Python具有清晰的语法结构,大家也把它称作可执行伪代码(executable pseudo-code).默认安装的Python开发环境已经附带了很多高级数据类型,如列表.元组.字典.集合.队列等,无需进一步编程就可以使用这些数据类型的操作.使用这些数据类型使得实现抽象的数学概念非常简单.此外,读者还可以使用自己

  • Python语言描述机器学习之Logistic回归算法

    本文介绍机器学习中的Logistic回归算法,我们使用这个算法来给数据进行分类.Logistic回归算法同样是需要通过样本空间学习的监督学习算法,并且适用于数值型和标称型数据,例如,我们需要根据输入数据的特征值(数值型)的大小来判断数据是某种分类或者不是某种分类. 一.样本数据 在我们的例子中,我们有这样一些样本数据: 样本数据有3个特征值:X0X0,X1X1,X2X2 我们通过这3个特征值中的X1X1和X2X2来判断数据是否符合要求,即符合要求的为1,不符合要求的为0. 样本数据分类存放在一个

  • Python语言描述KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可

  • Python语言实现SIFT算法

    目录 一.什么是SIFT算法 二.准备工作 2.1 实验设备 2.2 OpenCV安装 三.实验工作 3.1 图像选择 3.2 程序实现 3.3 程序结果 本文侧重于如何使用Python语言实现SIFT算法 所有程序已打包:基于OpenCV-Python的SIFT算法的实现 一.什么是SIFT算法   SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局

  • Python语言实现机器学习的K-近邻算法

    写在前面 额...最近开始学习机器学习嘛,网上找到一本关于机器学习的书籍,名字叫做<机器学习实战>.很巧的是,这本书里的算法是用Python语言实现的,刚好之前我学过一些Python基础知识,所以这本书对于我来说,无疑是雪中送炭啊.接下来,我还是给大家讲讲实际的东西吧. 什么是K-近邻算法? 简单的说,K-近邻算法就是采用测量不同特征值之间的距离方法来进行分类.它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系

  • 选择Python写网络爬虫的优势和理由

    什么是网络爬虫? 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成.传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件 爬虫有什么用? 做为通用搜索引擎网页收集器.(google,baidu) 做垂直搜索引擎. 科学研究:在线人类行为,在线社群演化,人类动力学研究,计量社会学,复杂网络,数据挖掘,等领域的实证研究都需要大量数据,网络爬虫是收集相关数据的利器.

  • Python机器学习算法之k均值聚类(k-means)

    一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低.这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊.下面的代码中这些可以优化的并没有改,

  • Python机器学习算法之k均值聚类(k-means)

    一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低.这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊.下面的代码中这些可以优化的并没有改,

  • python语言中有算法吗

    了解算法之前,我们先看一下什么是算法 定义:算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出.如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题.不同的算法可能用不同的时间.空间或效率来完成同样的任务.一个算法的优劣可以用空间复杂度与时间复杂度来衡量. python中的常见算法 冒泡排序 效率:O(n2) 原理: 比较相邻的元素,如果

  • Python机器学习算法之决策树算法的实现与优缺点

    1.算法概述 决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法. 分类算法是利用训练样本集获得分类函数即分类模型(分类器),从而实现将数据集中的样本划分到各个类中.分类模型通过学习训练样本中属性集与类别之间的潜在关系,并以此为依据对新样本属于哪一类进行预测. 决策树算法是直观运用概率分析的一种图解法,是一种十分常用的分类方法,属于有监督学习. 决策树是一种树形结构,其中每个内部结点表示在一个属性上的测试,每个

随机推荐