Python 读取图片文件为矩阵和保存矩阵为图片的方法

读取图片为矩阵

import matplotlib
im = matplotlib.image.imread('0_0.jpg')

保存矩阵为图片

import numpy as np
import scipy

x = np.random.random((600,800,3))
scipy.misc.imsave('meelo.jpg', x)

以上这篇Python 读取图片文件为矩阵和保存矩阵为图片的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python各类图像库的图片读写方式总结(推荐)
  • Python实现识别手写数字 Python图片读入与处理
  • Python的numpy库中将矩阵转换为列表等函数的方法
  • 从零学python系列之从文件读取和保存数据
(0)

相关推荐

  • 从零学python系列之从文件读取和保存数据

    在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的"sketch.txt"为例: 新建IDLE会话,首先导入os模块,并将工作目录却换到包含文件"sketch.txt"的文件夹,如C:\\Python33\\HeadFirstPython\\chapter3 复制代码 代码如下: >>> import os>>> os.getcwd()    #查看当前工作目录'C:\\Python33'>&

  • Python各类图像库的图片读写方式总结(推荐)

    最近在研究深度学习视觉相关的东西,经常需要写python代码搭建深度学习模型.比如写CNN模型相关代码时,我们需要借助python图像库来读取图像并进行一系列的图像处理工作.我最常用的图像库当然是opencv,很强大很好用,但是opencv也有一些坑,不注意的话也会搞出大麻烦.近期我也在看一些别人写的代码,因为个人习惯不一样,他们在做深度学习时用于图片读取的图像库各不相同,从opencv到PIL再到skimage等等各种库都有,有些库读进来的图片存储方式也不太一样,如果不好好总结这些主流图像读写

  • Python实现识别手写数字 Python图片读入与处理

    写在前面 在上一篇文章Python徒手实现手写数字识别-大纲中,我们已经讲过了我们想要写的全部思路,所以我们不再说全部的思路. 我这一次将图片的读入与处理的代码写了一下,和大纲写的过程一样,这一段代码分为以下几个部分: 读入图片: 将图片读取为灰度值矩阵: 图片背景去噪: 切割图片,得到手写数字的最小矩阵: 拉伸/压缩图片,得到标准大小为100x100大小矩阵: 将图片拉为1x10000大小向量,存入训练矩阵中. 所以下面将会对这几个函数进行详解. 代码分析 基础内容 首先我们现在最前面定义基础

  • Python的numpy库中将矩阵转换为列表等函数的方法

    这篇文章主要介绍Python的numpy库中的一些函数,做备份,以便查找. (1)将矩阵转换为列表的函数:numpy.matrix.tolist() 返回list列表 Examples >>> >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2

  • 使用python读取txt文件的内容,并删除重复的行数方法

    注意,本文代码是使用在txt文档上,同时txt文档中的内容每一行代表的是图片的名字. #coding:utf-8 import shutil readDir = "原文件绝对路经" writeDir = "写入文件的绝对路径" #txtDir = "/home/fuxueping/Desktop/1" lines_seen = set() outfile=open(writeDir,"w") f = open(readDir,

  • Python 读取图片文件为矩阵和保存矩阵为图片的方法

    读取图片为矩阵 import matplotlib im = matplotlib.image.imread('0_0.jpg') 保存矩阵为图片 import numpy as np import scipy x = np.random.random((600,800,3)) scipy.misc.imsave('meelo.jpg', x) 以上这篇Python 读取图片文件为矩阵和保存矩阵为图片的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴

  • Python读取mat文件,并保存为pickle格式的方法

    这两天在搞Theano,要把mat文件转成pickle格式载入Python. Matlab是把一维数组当做n*1的矩阵的,但Numpy里还是有vector和matrix的区别,Theano也是对二者做了区分. 直接把代码贴出来吧,好像也没什么可讲的 = = from scipy.io import loadmat import numpy, cPickle data_dict=loadmat(r'E:\dataset\CIFAR10\CIFAR10_small.mat') #need an r!

  • python 读取.csv文件数据到数组(矩阵)的实例讲解

    利用numpy库 (缺点:有缺失值就无法读取) 读: import numpy my_matrix = numpy.loadtxt(open("1.csv","rb"),delimiter=",",skiprows=0) 写: numpy.savetxt('2.csv', my_matrix, delimiter = ',') 可能遇到的问题: SyntaxError: (unicode error) 'unicodeescape' codec

  • Python读取YUV文件,并显示的方法

    Python读取YUV格式文件,并使用opencv显示的方法 opencv可以读取的图片类型比较多,但大多是比较常见的类型,比如".jpg"和".png",但它不能直接读取YUV格式的文件,需要通过python读取YUV文件,并进行相应的转换后,才能被opencv读取,并进行后续相应的处理. 话不多说,直接上程序. import cv2 from numpy import * import Image screenLevels = 255.0 def yuv_imp

  • Python读取excel文件中的数据,绘制折线图及散点图

    目录 一.导包 二.绘制简单折线 三.pandas操作Excel的行列 四.pandas处理Excel数据成为字典 五.绘制简单折线图 六.绘制简单散点图 一.导包 import pandas as pd import matplotlib.pyplot as plt 二.绘制简单折线 数据:有一个Excel文件lemon.xlsx,有两个表单,表单名分别为:Python 以及student. Python的表单数据如下所示: student的表单数据如下所示:  1.在利用pandas模块进行

  • python读取csv文件并把文件放入一个list中的实例讲解

    如下所示: #coding=utf8 ''' 读取CSV文件,把csv文件放在一份list中. ''' import csv class readCSV(object): def __init__(self,path="Demo.csv"): #创建一个属性用来保存要操作CSV的文件 self.path=path try: #打开一个csv文件,并赋予读的权限 self.csvHand=open(self.path,"r") #调用csv的reader函数读取csv

  • 基于python读取.mat文件并取出信息

    这篇文章主要介绍了基于python读取.mat文件并取出信息,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 导入所需包 from scipy.io import loadmat 读取.mat文件 随便从下面文件里读取一个: m = loadmat('H_BETA.mat') # 读出来的 m 是一个dict(字典)数据结构 读出来的m内容: m:{'__header__': b'MATLAB 5.0 MAT-file, Platform: GL

  • Python读取excel文件中带公式的值的实现

    在进行excel文件读取的时候,我自己设置了部分直接从公式获取单元格的值 但是用之前的读取方法进行读取的时候,返回值为空 import os import xlrd from xlutils.copy import copy file_path = os.path.abspath(os.path.dirname(__file__)) # 获取当前文件目录 print(file_path) root_path = os.path.dirname(file_path) # 获取文件上级目录 data

  • 如何利用python读取micaps文件详解

    最近用编程处理文件挺多的,matlab用得比较熟,但还是想用python来写写,Fortran就不用了. 所用到的数据如下图,前面4行是说明,实际要用的数据是第5行开始. 一共是有29*53个点,每一组就有53个数据,一共是有29组. 下面就是操作了 # 导入所需的库 import numpy # 打开 micaps 文件 f1 = open('13052520.000', 'rt') f2 = open('data.txt', 'wt') # 前面4行为注释数据,没有用 for i in ra

随机推荐