python之pandas用法大全

一、生成数据表

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as np
import pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))

3、用pandas创建数据表:

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
 "date":pd.date_range('20130102', periods=6),
 "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
 "age":[23,44,54,32,34,32],
 "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
 "price":[1200,np.nan,2133,5433,np.nan,4432]},
 columns =['id','date','city','category','age','price'])

二、数据表信息查看

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、每一列数据的格式:

df.dtypes

4、某一列格式:

df['B'].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df.isnull()

7、查看某一列的唯一值:

df['B'].unique()

8、查看数据表的值:

df.values 

9、查看列名称:

df.columns

10、查看前10行数据、后10行数据:

df.head() #默认前10行数据
df.tail()  #默认后10 行数据

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的均值对NA进行填充:

df['prince'].fillna(df['prince'].mean())

3、清楚city字段的字符空格:

df['city']=df['city'].map(str.strip)

4、大小写转换:

df['city']=df['city'].str.lower()

5、更改数据格式:

df['price'].astype('int')

6、更改列名称:

df.rename(columns={'category': 'category-size'}) 

7、删除后出现的重复值:

df['city'].drop_duplicates()

8、删除先出现的重复值:

df['city'].drop_duplicates(keep='last')

9、数据替换:

df['city'].replace('sh', 'shanghai')

四、数据预处理

df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})

1、数据表合并

df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left')    #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集

2、设置索引列

df_inner.set_index('id')

3、按照特定列的值排序:

df_inner.sort_values(by=['age'])

4、按照索引列排序:

df_inner.sort_index()

5、如果prince列的值>3000,group列显示high,否则显示low:

df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')

6、对复合多个条件的数据进行分组标记

df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1

7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size

pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))

8、将完成分裂后的数据表和原df_inner数据表进行匹配

df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)

五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值

df_inner.loc[3]

2、按索引提取区域行数值

df_inner.iloc[0:5]

3、重设索引

df_inner.reset_index()

4、设置日期为索引

df_inner=df_inner.set_index('date') 

5、提取4日之前的所有数据

df_inner[:'2013-01-04']

6、使用iloc按位置区域提取数据

df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。

7、适应iloc按位置单独提起数据

df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列

8、使用ix按索引标签和位置混合提取数据

df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据

9、判断city列的值是否为北京

df_inner['city'].isin(['beijing'])

10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来

df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])] 

11、提取前三个字符,并生成数据表

pd.DataFrame(category.str[:3])

六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选

df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2、使用“或”进行筛选

df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age']) 

3、使用“非”条件进行筛选

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']) 

4、对筛选后的数据按city列进行计数

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

5、使用query函数进行筛选

df_inner.query('city == ["beijing", "shanghai"]')

6、对筛选后的结果按prince进行求和

df_inner.query('city == ["beijing", "shanghai"]').price.sum()

七、数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总

df_inner.groupby('city').count()

2、按城市对id字段进行计数

df_inner.groupby('city')['id'].count()

3、对两个字段进行汇总计数

df_inner.groupby(['city','size'])['id'].count()

4、对city字段进行汇总,并分别计算prince的合计和均值

df_inner.groupby('city')['price'].agg([len,np.sum, np.mean]) 

八、数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样

df_inner.sample(n=3) 

2、手动设置采样权重

weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights) 

3、采样后不放回

df_inner.sample(n=6, replace=False) 

4、采样后放回

df_inner.sample(n=6, replace=True)

5、 数据表描述性统计

df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置

6、计算列的标准差

df_inner['price'].std()

7、计算两个字段间的协方差

df_inner['price'].cov(df_inner['m-point']) 

8、数据表中所有字段间的协方差

df_inner.cov()

9、两个字段的相关性分析

df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关

10、数据表的相关性分析

df_inner.corr()

九、数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel

df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc') 

2、写入到CSV

df_inner.to_csv('excel_to_python.csv')

以上就是关于pandas的基本用法,大家可以参考下

您可能感兴趣的文章:

  • 对pandas的dataframe绘图并保存的实现方法
  • Python科学计算之Pandas详解
  • Python遍历pandas数据方法总结
  • python实现在pandas.DataFrame添加一行
(0)

相关推荐

  • python实现在pandas.DataFrame添加一行

    实例如下所示: from pandas import * from random import * df = DataFrame(columns=('lib', 'qty1', 'qty2'))#生成空的pandas表 for i in range(5):#插入一行<span id="transmark" style="display:none;"></span> df.loc[i] = [randint(-1,1) for n in ran

  • Python科学计算之Pandas详解

    起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计

  • 对pandas的dataframe绘图并保存的实现方法

    对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d

  • Python遍历pandas数据方法总结

    前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa

  • python之pandas用法大全

    一.生成数据表 1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as np import pandas as pd 2.导入CSV或者xlsx文件: df = pd.DataFrame(pd.read_csv('name.csv',header=1)) df = pd.DataFrame(pd.read_excel('name.xlsx')) 3.用pandas创建数据表: df = pd.DataFrame({"id":[1001

  • Python input()函数用法大全

    input()函数获取用户输入数据,实现用户交互 语法格式: 变量 = input("提示信息") input()返回的是字符串,无论输入的是数字还是字符串,默认的输入结束键是回车键 input()函数有一些特殊的用法 用法1:通过if判断或iter()函数的哨兵值用法让input()遇到回车键也能持续输入 txt = '' while True: k = input() if k == 'quit': break txt += k + '\n' print('*****以下是输出内容

  • python解决pandas处理缺失值为空字符串的问题

    踩坑记录: 用pandas来做csv的缺失值处理时候发现奇怪BUG,就是excel打开csv文件,明明有的格子没有任何东西,当然,我就想到用pandas的dropna()或者fillna()来处理缺失值. 但是pandas读取csv文件后发现那个空的地方isnull()竟然是false,就是说那个地方有东西... 后来经过排查发现看似什么都没有的地方有空字符串,故pandas认为那儿不是缺失值,所以就不能用dropna()或者fillna()来处理. 解决思路:先用正则将空格匹配出来,然后全部替

  • Python常见的pandas用法demo示例

    本文实例总结了Python常见的pandas用法.分享给大家供大家参考,具体如下: import numpy as np import pandas as pd s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列. 序列就是一列内容,每一行有一个index值 print(s) print(s.index) 0     1.0 1     3.0 2     6.0 3     NaN 4    44.0 5     1.0 dtype: float64 R

  • Python pandas用法最全整理

    1.首先导入pandas库,一般都会用到numpy库,所以我们先导入备用: import numpy as npimport pandas as pd 2.导入CSV或者xlsx文件: df = pd.DataFrame(pd.read_csv('name.csv',header=1))df = pd.DataFrame(pd.read_excel('name.xlsx')) 3.用pandas创建数据表: df = pd.DataFrame({"id":[1001,1002,1003

  • Python数据分析模块pandas用法详解

    本文实例讲述了Python数据分析模块pandas用法.分享给大家供大家参考,具体如下: 一 介绍 pandas(Python Data Analysis Library)是基于numpy的数据分析模块,提供了大量标准数据模型和高效操作大型数据集所需要的工具,可以说pandas是使得Python能够成为高效且强大的数据分析环境的重要因素之一. pandas主要提供了3种数据结构: 1)Series,带标签的一维数组. 2)DataFrame,带标签且大小可变的二维表格结构. 3)Panel,带标

  • Python数据分析pandas模块用法实例详解

    本文实例讲述了Python数据分析pandas模块用法.分享给大家供大家参考,具体如下: pandas pandas10分钟入门,可以查看官网:10 minutes to pandas 也可以查看更复杂的cookbook pandas是非常强大的数据分析包,pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包.就好比 Numpy的核心是 ndarray,pandas 围绕着 Series 和 DataFrame 两个核心数据结构展开 .Series和DataFrame 分

  • python读写数据读写csv文件(pandas用法)

    python中数据处理是比较方便的,经常用的就是读写文件,提取数据等,本博客主要介绍其中的一些用法.Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能. 一.pandas读取csv文件 数据处理过程中csv文件用的比较多. import pandas as pd data = pd.read_csv('F:/Zhu/test/test.csv') 下面看一下pd.read_csv常用的参数: panda

  • python 中yaml文件用法大全

    yaml简单介绍 YAML是一种标记语言,它使用空白符号缩进和大量依赖外观的特色,特别适合用来表达或编辑数据结构.各种配置文件.倾印调试内容.文件大纲. 大小写敏感 使用缩进表示层级关系 缩进不允许使用tab,只允许空格 缩进的空格数不重要,只要相同层级的元素左对齐即可 '#'表示注释 yaml数组 yaml语音数组很简单,使用短横线 '-' 作为数组的开始标志. 一维数组 import yaml #三个双引号的作用是字符换行不需要加换行符 y = """ - 111 - 2

随机推荐