python如何为被装饰的函数保留元数据

本文实例为大家分享了python为被装饰的函数保留元数据的具体代码,供大家参考,具体内容如下

案例:

在函数对象中保存着一些函数的元数据,如:

f.__name__           函数名

f.__doc__              函数文档

f.__moudle__       函数所属模块名

f.__dict__              属性字典

f.__defaults__       默认参数组

……

在使用装饰器后,在装饰器里访问以上属性时,我们看到的是装饰器函数的元数据

需求:

实现在装饰器函数中,保留 被装饰函数 的元数据

如何实现?

通过 functools中的wraps, update_wrapper方法实现,每个都可单独实现

#!/usr/bin/python3

import time
from functools import (wraps, update_wrapper, WRAPPER_ASSIGNMENTS, WRAPPER_UPDATES)

def count_time(func):
  """
  给目标函数加上计算运行时间统计
  """
  # 这个装上器和update_wrapper一样,默认参数WRAPPER_ASSIGNMENTS, WRAPPER_UPDATES
  @wraps(func)
  def wrapper(*args, **kwargs):
    start_time = time.time()

    # 定义result接收函数返回值,并且在装饰函数最后返回回去
    resutl = func(*args, **kwargs)
    print('运行时间:', time.time()-start_time)
    return resutl

  # 其中默认参数 WRAPPER_ASSIGNMENTS, WRAPPER_UPDATES
  # update_wrapper(wrapper, func)
  return wrapper

@count_time
def add(num=100):
  """
  计算 0~num 累加值,默认num=100
  """
  time.sleep(1)
  return sum([x for x in range(num+1)])

if __name__ == '__main__':
  print('函数名:', add.__name__)
  print('属性字典:', add.__dict__)
  print('函数默认参数:', add.__defaults__)
  print('函数所在模块:', add.__module__)
  print('函数文档:', add.__doc__)

  # 打印两个默认参数
  print(WRAPPER_ASSIGNMENTS, WRAPPER_UPDATES)
  result = add()
  print(result)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 浅析Python编写函数装饰器

    编写函数装饰器 本节主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s to %s' %(self.calls, self.func.__name__)

  • python函数装饰器用法实例详解

    本文实例讲述了python函数装饰器用法.分享给大家供大家参考.具体如下: 装饰器经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计, 有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. #! coding=utf-8 import time def timeit(func): def wrapper(a): start = time.clock() func

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • Python中利用函数装饰器实现备忘功能

    "备忘"的定义 "memoization"(备忘)这个词是由Donald Michie在1968年提出的,它基于拉丁语单词"memorandum"(备忘录),意思是"被记住".虽然它和单词"memorization"在某种程度上有些相似,但它并不是该单词的错误拼写.实际上,Memoisation是一种用于通过计算来加速程序的技术,它通过记住输入量的计算结果,例如函数调用结果,来实现其加速目的.如果遇到相同的

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • python通过装饰器检查函数参数数据类型的方法

    本文实例讲述了python通过装饰器检查函数参数数据类型的方法.分享给大家供大家参考.具体分析如下: 这段代码定义了一个python装饰器,通过此装饰器可以用来检查指定函数的参数是否是指定的类型,在定义函数时加入此装饰器可以非常清晰的检测函数参数的类型,非常方便 复制代码 代码如下: def accepts(exception,**types):     def check_accepts(f):         assert len(types) == f.func_code.co_argco

  • python使用装饰器和线程限制函数执行时间的方法

    本文实例讲述了python使用装饰器和线程限制函数执行时间的方法.分享给大家供大家参考.具体分析如下: 很多时候函数内部包含了一些不可预知的事情,比如调用其它软件,从网络抓取信息,可能某个函数会卡在某个地方不动态,这段代码可以用来限制函数的执行时间,只需要在函数的上方添加一个装饰器,timelimited(2)就可以限定函数必须在2秒内执行完成,如果执行完成则返回函数正常的返回值,如果执行超时则会抛出错误信息. # -*- coding: utf-8 -*- from threading imp

  • 详谈Python高阶函数与函数装饰器(推荐)

    一.上节回顾 Python2与Python3字符编码问题,不管你是初学者还是已经对Python的项目了如指掌了,都会犯一些编码上面的错误.我在这里简单归纳Python3和Python2各自的区别. 首先是Python3-->代码文件都是用utf-8来解释的.将代码和文件读到内存中就变成了Unicode,这也就是为什么Python只有encode没有decode了,因为内存中都将字符编码变成了Unicode,而Unicode是万国码,可以"翻译"所以格式编码的格式.Python3中

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

随机推荐