python使用matplotlib模块绘制多条折线图、散点图

今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下:

#!usr/bin/env python
#encoding:utf-8

'''
__Author__:沂水寒城
功能:折线图、散点图测试
'''

import random
import matplotlib
import matplotlib.pyplot as plt 

def list2mat(data_list,w):
 '''
 切片、转置
 '''
 mat=[]
 res=[]
 for i in range(0,len(data_list)-w+1,w):
  mat.append(data_list[i:i+w])
 for i in range(len(mat[0])):
  one_list=[]
  for j in range(len(mat)):
   one_list.append(mat[j][i])
  res.append(one_list)
 return res

def draw_pic_test():
 '''
 作图
 '''
 data_list=[]
 for i in range(100):
  data_list.append(random.randint(2,150))
 month_list=range(1,11,1)
 mat=list2mat(data_list,w=10)
 for one_list in mat:
  one_list=[int(one) for one in one_list]
  plt.plot(month_list,one_list,"x-",label="test_zhexian")
 plt.savefig('test_zhexian.png')
 plt.close()
 for one_list in mat:
  one_list=[int(one) for one in one_list]
  plt.scatter(month_list,one_list,marker='x',label='test_sandian',s=30)
 plt.savefig('test_sandian.png')
 plt.close()

if __name__ == '__main__':
 draw_pic_test()

结果如下:

1.折线图

2.散点图

挺有意思的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python matplotlib绘图可视化知识点整理(小结)

    无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

  • python调用Matplotlib绘制分布点并且添加标签

    本文实例为大家分享了Python调用Matplotlib绘制分布点添加标签的具体代码,供大家参考,具体内容如下 添加标签的目的 代码 截图 目的 上文介绍了根据图像的大小作为坐标来绘制分布点图.老大又给了我一个任务,我绘制完,每次将图保存,发给她,但是图片中的点的坐标是不能显示了,所以她让我给每个点添加个label,而且label是该点的横纵坐标. 代码 import matplotlib.pyplot as plt from numpy.random import rand import nu

  • python matplotlib如何给图中的点加标签

    这篇文章主要介绍了python matplotlib给图中的点加标签,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在写论文用到matplotlib画散点图,想着如果能把每个点对应的ID打在点的旁边就好了,经过一番搜索,最后找到了方法. 首先是打点,先把所有的点画好,举例如下: p1 = ax.scatter(X[:,0], X[:,1], marker = '*', color = 'r', label='1', s=10) 再依次给每个点打

  • python使用PIL和matplotlib获取图片像素点并合并解析

    python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow. 所以 安装: pip install pillow 获取像素点 import numpy as np from PIL import Image img = Image.open("./b.png").convert('RGBA'

  • python调用Matplotlib绘制分布点图

    Python调用Matplotlib代码绘制分布点,供大家参考,具体内容如下 绘制点图的目的 Matplotlib简介 代码 截图 1.绘制点图的目的 我们实验室正在做关于人脸识别的项目,其中在人脸检测后,会有些误检的图片,但是其中就有很多不符合的.很明显的是从图片大小,就可以过滤掉一部分.老大交给我的工作,就是通过绘制图片width,height的分布图,来找到一个合理的阈值. 2.Matlablib简介 Matplotlib是一个Python的图形框架 下面是官网的例子 Matplotlib

  • Python Matplotlib实现三维数据的散点图绘制

    一.背景 近期项目即将开展,计划第一步就是实现数据的可视化,所以先学习一下数据展示相关Demo.选用Python2.7与Matplotlib来实现,平台采用Pycharm,值得一提的是,Matplotlib的安装前首先要安装Numpy包,但是在完成Numpy的安装之后,楼主不能在PyCharm平台下进行自动安装,或者CMD中使用类似pip install Matplotlib,参考网上解决方案后采用直接去官网下载相应的安装包直接运行安装到相关目录下.在此就不赘述了. 二. 参考 Python语言

  • Python+matplotlib绘制不同大小和颜色散点图实例

     具有不同标记颜色和大小的散点图演示. 演示结果: 实现代码: import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook # Load a numpy record array from yahoo csv data with fields date, open, close, # volume, adj_close from the mpl-data/example directory

  • python matplotlib 在指定的两个点之间连线方法

    为了找到matplotlib在两个点之间连线的方法真是费了好大功夫,最后还是决定用简单的 plt.plot 来解决.如果有好多对点,则可以通过循环实现连接,还可以用 plt.arrow 画箭头,具体可参考这里 import matplotlib.pyplot as plt x = [[1, 3], [2, 5]] # 要连接的两个点的坐标 y = [[4, 7], [6, 3]] for i in range(len(x)): plt.plot(x[i], y[i], color='r') pl

  • python使用matplotlib模块绘制多条折线图、散点图

    今天想直观的展示一下数据就用到了matplotlib模块,之前都是一张图只有一条曲线,现在想同一个图片上绘制多条曲线来对比,实现很简单,具体如下: #!usr/bin/env python #encoding:utf-8 ''' __Author__:沂水寒城 功能:折线图.散点图测试 ''' import random import matplotlib import matplotlib.pyplot as plt def list2mat(data_list,w): ''' 切片.转置 '

  • Python使用matplotlib模块绘制图像并设置标题与坐标轴等信息示例

    本文实例讲述了Python使用matplotlib模块绘制图像并设置标题与坐标轴等信息.分享给大家供大家参考,具体如下: 进行图像绘制有时候需要设定坐标轴以及图像标题等信息,示例代码如下: #-*- coding: utf-8 -*- #!/usr/bin/python import matplotlib.pyplot as plt from numpy.random import randn x = range(100) y = randn(100) fig = plt.figure() ax

  • python调用matplotlib模块绘制柱状图

    我们可以调用matplotlib 绘制我们的柱状图,柱状图可以是水平的也可以是竖直的. 在这里我先记录下竖直的柱状图怎么绘制 在这里一般用到的函数就是bar # bar(left, height, width=0.8, bottom=None, hold=None, **kwargs) # 绘制柱形图 # left:柱形图的x坐标 # height柱形图的高度,以0.0为基准 # width:柱形图的宽度,默认0.8 # facecolor:颜色 # edgecolor:边框颜色n # bott

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • 教你利用python的matplotlib(pyplot)绘制折线图和柱状图

    目录 前言 一.折线图 二.柱状图 总结 前言 今天帮师兄赶在deadline之前画论文的图,现学现卖很是刺激,现把使用matplotlib的子库pyplot画折线图和柱状图的代码记录分享一下,方便大家参考,个人感觉pyplot真的蛮方便的,非常值得使用. 先看下官方对pyplot的描述:“Provides a MATLAB-like plotting framework.”.对,就是一个类似matlab的画图框架.就不多多说了,直接上代码吧: 一.折线图 代码: import matplotl

  • 使用python matploblib库绘制准确率,损失率折线图

    我就废话不多说了,大家还是直接看代码吧~ import matplotlib.pyplot as plt epochs = [0,1,2,3] acc = [4,8,6,5] loss = [3,2,1,4] plt.plot(epochs,acc,color='r',label='acc') # r表示红色 plt.plot(epochs,loss,color=(0,0,0),label='loss') #也可以用RGB值表示颜色 #####非必须内容######### plt.xlabel(

  • Python 可视化matplotlib模块基础知识

    目录 1. matplotlib 模块概述 2. matplotlib.pyplot 相关方法 3. matplotlib.pyplot 图表展示 前言: 互联网时代下,在网络中每天都会产生很多数据,通过对数据分析之后,如何更好的诠释数据背后的意义,我们需要对数据进行可视化展示. 在数据可视化中,Python 也支持第三模块 matplotlib 模块:Python使用最多的可视化库 seaborn 模块:基于matplotlib的图形可视化 pycharts 模块:用于生成Echarts 图表

  • Python绘制交通流折线图详情

    目录 一.数据集下载 二.折线图绘制 1.解压npz文件 2.折线图绘制 一.数据集下载 加州高速公路PEMS数据集 这里绘制PEMS04中的交通流量数据.该数据集中包含旧金山2018年1月1日至2月28日的29条道路上307个探测器每五分钟收集的数据. 二.折线图绘制 1.解压npz文件 npz是一种numpy文件存储的压缩格式,可使用numpy进行读取. allow_pickle=True用于防止numpy版本过高带来的错误. data.files查看压缩文件下的所有文件. import n

  • Python基于matplotlib实现绘制三维图形功能示例

    本文实例讲述了Python基于matplotlib实现绘制三维图形功能.分享给大家供大家参考,具体如下: 代码一: # coding=utf-8 import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d x,y = np.mgrid[-2:2:20j,-2:2:20j] #测试数据 z=x*np.exp(-x**2-y**2) #三维图形 ax = plt.subplot(111, project

  • Python 使用matplotlib模块模拟掷骰子

    掷骰子 骰子类 # die.py 骰子类模块 from random import randint class Die(): """骰子类""" def __init__(self, num_sides=6): """默认六面的骰子""" self.num_sides = num_sides def roll(self): """掷骰子的方法"&q

随机推荐