Python函数式编程指南(四):生成器详解

4. 生成器(generator)

4.1. 生成器简介

首先请确信,生成器就是一种迭代器。生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中。另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一。

从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作。这部分我们会在稍后的部分介绍。

4.2. 生成器函数

4.2.1. 使用生成器函数定义生成器

如何获取一个生成器?首先来看一小段代码:

代码如下:

>>> def get_0_1_2():
...   yield 0
...   yield 1
...   yield 2
...
>>> get_0_1_2
<function get_0_1_2 at 0x00B2CB70>

我们定义了一个函数get_0_1_2,并且可以查看到这确实是函数类型。但与一般的函数不同的是,get_0_1_2的函数体内使用了关键字yield,这使得get_0_1_2成为了一个生成器函数。生成器函数的特性如下:

1.调用生成器函数将返回一个生成器;

代码如下:

>>> generator = get_0_1_2()
>>> generator
<generator object get_0_1_2 at 0x00B1C7D8>

2.第一次调用生成器的next方法时,生成器才开始执行生成器函数(而不是构建生成器时),直到遇到yield时暂停执行(挂起),并且yield的参数将作为此次next方法的返回值;

代码如下:

>>> generator.next()
0

3.之后每次调用生成器的next方法,生成器将从上次暂停执行的位置恢复执行生成器函数,直到再次遇到yield时暂停,并且同样的,yield的参数将作为next方法的返回值;

代码如下:

>>> generator.next()
1
>>> generator.next()
2

4.如果当调用next方法时生成器函数结束(遇到空的return语句或是到达函数体末尾),则这次next方法的调用将抛出StopIteration异常(即for循环的终止条件);

代码如下:

>>> generator.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

5.生成器函数在每次暂停执行时,函数体内的所有变量都将被封存(freeze)在生成器中,并将在恢复执行时还原,并且类似于闭包,即使是同一个生成器函数返回的生成器,封存的变量也是互相独立的。
我们的小例子中并没有用到变量,所以这里另外定义一个生成器来展示这个特点:

代码如下:

>>> def fibonacci():
...   a = b = 1
...   yield a
...   yield b
...   while True:
...     a, b = b, a+b
...     yield b
...
>>> for num in fibonacci():
...   if num > 100: break
...   print num,
...
1 1 2 3 5 8 13 21 34 55 89

看到while True可别太吃惊,因为生成器可以挂起,所以是延迟计算的,无限循环并没有关系。这个例子中我们定义了一个生成器用于获取斐波那契数列。

4.2.2. 生成器函数的FAQ
接下来我们来讨论一些关于生成器的有意思的话题。

1.你的例子里生成器函数都没有参数,那么生成器函数可以带参数吗?

当然可以啊亲,而且它支持函数的所有参数形式。要知道生成器函数也是函数的一种:)

代码如下:

>>> def counter(start=0):
...   while True:
...     yield start
...     start += 1
...

这是一个从指定数开始的计数器。

2.既然生成器函数也是函数,那么它可以使用return输出返回值吗?

不行的亲,是这样的,生成器函数已经有默认的返回值——生成器了,你不能再另外给一个返回值;对,即使是return None也不行。但是它可以使用空的return语句结束。如果你坚持要为它指定返回值,那么Python将在定义的位置赠送一个语法错误异常,就像这样:

代码如下:

>>> def i_wanna_return():
...   yield None
...   return None
...
  File "<stdin>", line 3
SyntaxError: 'return' with argument inside generator

3.好吧,那人家需要确保释放资源,需要在try...finally中yield,这会是神马情况?(我就是想玩你)我在finally中还yield了一次!
Python会在真正离开try...finally时再执行finally中的代码,而这里遗憾地告诉你,暂停不算哦!所以结局你也能猜到吧!

代码如下:

>>> def play_u():
...   try:
...     yield 1
...     yield 2
...     yield 3
...   finally:
...     yield 0
...
>>> for val in play_u(): print val,
...
1 2 3 0

*这与return的情况不同。return是真正的离开代码块,所以会在return时立刻执行finally子句。
*另外,“在带有finally子句的try块中yield”定义在PEP 342中,这意味着只有Python 2.5以上版本才支持这个语法,在Python 2.4以下版本中会得到语法错误异常。

4.如果我需要在生成器的迭代过程中接入另一个生成器的迭代怎么办?写成下面这样好傻好天真。。

代码如下:

>>> def sub_generator():
...   yield 1
...   yield 2
...   for val in counter(10): yield val
...

这种情况的语法改进已经被定义在[PEP 380:委托至子生成器的语法]中,据说会在Python 3.3中实现,届时也可能回馈到2.x中。实现后,就可以这么写了:

代码如下:

>>> def sub_generator():
...   yield 1
...   yield 2
...   yield from counter(10)
  File "<stdin>", line 4
    yield from counter(10)
             ^
SyntaxError: invalid syntax

看到语法错误木有?现在我们还是天真一点吧~

有更多问题?请回复此文:)

4.3. 协同程序(coroutine)

协同程序(协程)一般来说是指这样的函数:

1.彼此间有不同的局部变量、指令指针,但仍共享全局变量;
2.可以方便地挂起、恢复,并且有多个入口点和出口点;
3.多个协同程序间表现为协作运行,如A的运行过程中需要B的结果才能继续执行。

协程的特点决定了同一时刻只能有一个协同程序正在运行(忽略多线程的情况)。得益于此,协程间可以直接传递对象而不需要考虑资源锁、或是直接唤醒其他协程而不需要主动休眠,就像是内置了锁的线程。在符合协程特点的应用场景,使用协程无疑比使用线程要更方便。

从另一方面说,协程无法并发其实也将它的应用场景限制在了一个很狭窄的范围,这个特点使得协程更多的被拿来与常规函数进行比较,而不是与线程。当然,线程比协程复杂许多,功能也更强大,所以我建议大家牢牢地掌握线程即可:Python线程指南

这一节里我也就不列举关于协程的例子了,以下介绍的方法了解即可。

Python 2.5对生成器的增强实现了协程的其他特点,在这个版本中,生成器加入了如下方法:

1.send(value):

send是除next外另一个恢复生成器的方法。Python 2.5中,yield语句变成了yield表达式,这意味着yield现在可以有一个值,而这个值就是在生成器的send方法被调用从而恢复执行时,调用send方法的参数。

代码如下:

>>> def repeater():
...   n = 0
...   while True:
...     n = (yield n)
...
>>> r = repeater()
>>> r.next()
0
>>> r.send(10)
10

*调用send传入非None值前,生成器必须处于挂起状态,否则将抛出异常。不过,未启动的生成器仍可以使用None作为参数调用send。
*如果使用next恢复生成器,yield表达式的值将是None。
2.close():
这个方法用于关闭生成器。对关闭的生成器后再次调用next或send将抛出StopIteration异常。
3.throw(type, value=None, traceback=None):
这个方法用于在生成器内部(生成器的当前挂起处,或未启动时在定义处)抛出一个异常。
*别为没见到协程的例子遗憾,协程最常见的用处其实就是生成器。

4.4. 一个有趣的库:pipe
这一节里我要向诸位简要介绍pipe。pipe并不是Python内置的库,如果你安装了easy_install,直接可以安装它,否则你需要自己下载它:http://pypi.python.org/pypi/pipe

之所以要介绍这个库,是因为它向我们展示了一种很有新意的使用迭代器和生成器的方式:流。pipe将可迭代的数据看成是流,类似于linux,pipe使用'|'传递数据流,并且定义了一系列的“流处理”函数用于接受并处理数据流,并最终再次输出数据流或者是将数据流归纳得到一个结果。我们来看一些例子。

第一个,非常简单的,使用add求和:

代码如下:

>>> from pipe import *
>>> range(5) | add
10

求偶数和需要使用到where,作用类似于内建函数filter,过滤出符合条件的元素:

代码如下:

>>> range(5) | where(lambda x: x % 2 == 0) | add
6

还记得我们定义的斐波那契数列生成器吗?求出数列中所有小于10000的偶数和需要用到take_while,与itertools的同名函数有类似的功能,截取元素直到条件不成立:

代码如下:

>>> fib = fibonacci
>>> fib() | where(lambda x: x % 2 == 0)\
...       | take_while(lambda x: x < 10000)\
...       | add
3382

需要对元素应用某个函数可以使用select,作用类似于内建函数map;需要得到一个列表,可以使用as_list:

代码如下:

>>> fib() | select(lambda x: x ** 2) | take_while(lambda x: x < 100) | as_list
[1, 1, 4, 9, 25, 64]

pipe中还包括了更多的流处理函数。你甚至可以自己定义流处理函数,只需要定义一个生成器函数并加上修饰器Pipe。如下定义了一个获取元素直到索引不符合条件的流处理函数:

代码如下:

>>> @Pipe
... def take_while_idx(iterable, predicate):
...   for idx, x in enumerate(iterable):
...     if predicate(idx): yield x
...     else: return
...

使用这个流处理函数获取fib的前10个数字:

代码如下:

>>> fib() | take_while_idx(lambda x: x < 10) | as_list
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

更多的函数就不在这里介绍了,你可以查看pipe的源文件,总共600行不到的文件其中有300行是文档,文档中包含了大量的示例。

pipe实现起来非常简单,使用Pipe装饰器,将普通的生成器函数(或者返回迭代器的函数)代理在一个实现了__ror__方法的普通类实例上即可,但是这种思路真的很有趣。

函数式编程指南全文到这里就全部结束了,希望这一系列文章能给你带来帮助。希望大家都能看到一些结构式编程之外的编程方式,并且能够熟练地在恰当的地方使用 :)

明天我会整理一个目录放上来方便查看,并且列出一些供参考的文章。遗憾的是这些文章几乎都是英文的,请努力学习英语吧 - -#

(0)

相关推荐

  • Python函数式编程指南(三):迭代器详解

    3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束. 迭代器不能回退,只能往前进行迭代.这并不是什么很大的缺点,因为人们几乎不需要在迭代途中进行回退操作. 迭代器也不是线程安全的,在多线程环境中对可变集合使用迭代器是一个危险的操作.但如果小心谨慎,或者干脆贯彻函数式思想坚持使用不可变的集合,那这也不是什么大问题. 对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典fo

  • 利用Fn.py库在Python中进行函数式编程

    尽管Python事实上并不是一门纯函数式编程语言,但它本身是一门多范型语言,并给了你足够的自由利用函数式编程的便利.函数式风格有着各种理论与实际上的好处(你可以在Python的文档中找到这个列表): 形式上可证 模块性 组合性 易于调试及测试 虽然这份列表已经描述得够清楚了,但我还是很喜欢Michael O.Church在他的文章"函数式程序极少腐坏(Functional programs rarely rot)"中对函数式编程的优点所作的描述.我在PyCon UA 2012期间的讲座

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • 用Python进行基础的函数式编程的教程

    许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术.本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格. 文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces.第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的.第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线. 示例都是用Python写的,因为很多人觉得Python易读.为了证明函数式技术对许多语言来说都相同,许多示例避免使用Pyt

  • Python函数式编程指南(一):函数式编程概述

    1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题.函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态.任何情况下,使用相同的参数调用函数始终能产生同样的结果. 在一个函数式的程序中,输入的数据"流过"一系列的函数,每一个函数根据它的输入产生输出.函数式风格避免编写有"边界效应"(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化.完全没有边界效应的函数被称为"纯函数式的"

  • Python函数式编程指南(二):从函数开始

    2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y 关于参数和返回值的语法细节可以参考其他文档,这里就略过了. 使用lambda可以定义简单的单行匿名函数.lambda的语法是: 复制代码 代码如下: lambda args: expression 参数(args)的语法与普通函数一样,同时表达式(expression)的值就是匿名函数调用的返回值:而lambda表达式返回这个匿名函数.如果我们

  • Python函数式编程

    主要内容 1.函数基本语法及特性 2.参数与局部变 3.返回值 4.递归 5.名函数 6.函数式编程介绍 7.阶函数 8.内置函数 函数基本语法及特性 定义 数学函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一 个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变 量,y是x的函数.自变量x的取值范围叫做这个函数的定义域. 但编程中的「函数」概念,与数学中的函数是有很 同的 函数是逻辑结构化和过程化的一种编程方法 函数的优点 减少重复代码 使程

  • 实例讲解python函数式编程

    函数式编程是使用一系列函数去解决问题,按照一般编程思维,面对问题时我们的思考方式是"怎么干",而函数函数式编程的思考方式是我要"干什么". 至于函数式编程的特点暂不总结,我们直接拿例子来体会什么是函数式编程. lambda表达式(匿名函数): 普通函数与匿名函数的定义方式: 复制代码 代码如下: #普通函数def add(a,b):    return a + b print add(2,3) #匿名函数add = lambda a,b : a + bprint a

  • Python函数式编程中itertools模块详解

    目录 容器与可迭代对象 count() 函数 cycle 函数 repeat 函数 enumerate 函数,添加序号 accumulate 函数 chain 与 groupby 函数 zip_longest 与 zip tee 函数 compress 函数 islice.dropwhile.takewhile.filterfalse.filter 总结 容器与可迭代对象 在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象 容器:用来存储多个元素的数据结构,例如 列表,元

  • Python函数式编程指南:对生成器全面讲解

    生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径. 这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯-- 1. 生成器(generator) 1.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的

  • Python面向对象编程repr方法示例详解

    目录 为什么要讲 __repr__ 重写 __repr__ 方法 str() 和 repr() 的区别 为什么要讲 __repr__ 在 Python 中,直接 print 一个实例对象,默认是输出这个对象由哪个类创建的对象,以及在内存中的地址(十六进制表示) 假设在开发调试过程中,希望使用 print 实例对象时,输出自定义内容,就可以用 __repr__ 方法了 或者通过 repr() 调用对象也会返回 __repr__ 方法返回的值 是不是似曾相识....没错..和 __str__ 一样的

  • Python函数式编程指南(四):生成器详解

    4. 生成器(generator) 4.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一. 从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作.这部分我们会在稍后的部分介绍. 4.2. 生成

  • Python高级编程之继承问题详解(super与mro)

    本文实例讲述了Python高级编程之继承问题.分享给大家供大家参考,具体如下: 多继承问题 1.单独调用父类: 一个子类同时继承自多个父类,又称菱形继承.钻石继承. 使用父类名.init(self)方式调用父类时: 例: class Parent(object): def __init__(self, name): self.name = name print('parent的init结束被调用') class Son1(Parent): def __init__(self, name, age

  • python多线程编程方式分析示例详解

    在Python多线程中如何创建一个线程对象如果你要创建一个线程对象,很简单,只要你的类继承threading.Thread,然后在__init__里首先调用threading.Thread的__init__方法即可 复制代码 代码如下: import threading  class mythread(threading.Thread):  def __init__(self, threadname):  threading.Thread.__init__(self, name = thread

  • python 并发编程 多路复用IO模型详解

    多路复用IO(IO multiplexing) 这种IO方式为事件驱动IO(event driven IO). 我们都知道,select/epoll的好处就在于单个进程process就可以同时处理多个网络连接的IO.它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程.它的流程如图: select是多路复用的一种 当用户进程调用了select,那么整个进程会被block,而同时,kernel会"监视&qu

随机推荐