C#泛型编程介绍

例子代码:

代码如下:

class Program
    {
        static void Main(string[] args)
        {
            int obj = 2;
            Test<int> test = new Test<int>(obj);
            Console.WriteLine("int:" + test.obj);
            string obj2 = "hello world";
            Test<string> test1 = new Test<string>(obj2);
            Console.WriteLine("String:" + test1.obj);
            Console.Read();
        }
    }
    class Test<T>
    {
        public T obj;
        public Test(T obj)
        {
            this.obj = obj;
        }
}

输出结果是:

int:2
String:hello world

程序分析:

1、  Test是一个泛型类。T是要实例化的范型类型。如果T被实例化为int型,那么成员变量obj就是int型的,如果T被实例化为string型,那么obj就是string类型的。

2、  根据不同的类型,上面的程序显示出不同的值。

C#泛型机制:

C#泛型能力有CLR在运行时支持:C#泛型代码在编译为IL代码和元数据时,采用特殊的占位符来表示范型类型,并用专有的IL指令支持泛型操作。而真正的泛型实例化工作以“on-demand”的方式,发生在JIT编译时。

看看刚才的代码中Main函数的元数据

代码如下:

.method private hidebysig static void  Main(string[] args) cil managed
{
  .entrypoint
  // Code size       79 (0x4f)
  .maxstack  2
  .locals init ([0] int32 obj,
           [1] class CSharpStudy1.Test`1<int32> test,
           [2] string obj2,
           [3] class CSharpStudy1.Test`1<string> test1)
  IL_0000:  nop
  IL_0001:  ldc.i4.2
  IL_0002:  stloc.0
  IL_0003:  ldloc.0
  IL_0004:  newobj     instance void class CSharpStudy1.Test`1<int32>::.ctor(!0)
  IL_0009:  stloc.1
  IL_000a:  ldstr      "int:"
  IL_ 000f:  ldloc.1
  IL_0010:  ldfld      !0 class CSharpStudy1.Test`1<int32>::obj
  IL_0015:  box        [mscorlib]System.Int32
  IL_ 001a:  call       string [mscorlib]System.String::Concat(object,
                                                              object)
  IL_ 001f:  call       void [mscorlib]System.Console::WriteLine(string)
  IL_0024:  nop
  IL_0025:  ldstr      "hello world"
  IL_ 002a:  stloc.2
  IL_002b:  ldloc.2
  IL_ 002c:  newobj     instance void class CSharpStudy1.Test`1<string>::.ctor(!0)
  IL_0031:  stloc.3
  IL_0032:  ldstr      "String:"
  IL_0037:  ldloc.3
  IL_0038:  ldfld      !0 class CSharpStudy1.Test`1<string>::obj
  IL_003d:  call       string [mscorlib]System.String::Concat(string,
                                                              string)
  IL_0042:  call       void [mscorlib]System.Console::WriteLine(string)
  IL_0047:  nop
  IL_0048:  call       int32 [mscorlib]System.Console::Read()
  IL_004d:  pop
  IL_004e:  ret
} // end of method Program::Main

再来看看Test类中构造函数的元数据

代码如下:

.method public hidebysig specialname rtspecialname
        instance void  .ctor(!T obj) cil managed
{
  // Code size       17 (0x11)
  .maxstack  8
  IL_0000:  ldarg.0
  IL_0001:  call       instance void [mscorlib]System.Object::.ctor()
  IL_0006:  nop
  IL_0007:  nop
  IL_0008:  ldarg.0
  IL_0009:  ldarg.1
  IL_ 000a:  stfld      !0 class ConsoleCSharpTest1.Test`1<!T>::obj
  IL_ 000f:  nop
  IL_0010:  ret
} // end of method Test`1::.ctor

1、第一轮编译时,编译器只为Test<T>类型产生“泛型版”的IL代码与元数据——并不进行泛型的实例化,T在中间只充当占位符。例如:Test类型元数据中显示的<!T>
2、JIT编译时,当JIT编译器第一次遇到Test<int>时,将用int替换“范型版”IL代码与元数据中的T——进行泛型类型的实例化。例如:Main函数中显示的<int>
3、CLR为所有类型参数为“引用类型”的泛型类型产生同一份代码;但是如果类型参数为“值类型”,对每一个不同的“值类型”,CLR将为其产生一份独立的代码。因为实例化一个引用类型的泛型,它在内存中分配的大小是一样的,但是当实例化一个值类型的时候,在内存中分配的大小是不一样的。

C#泛型特点:

1、如果实例化泛型类型的参数相同,那么JIT编辑器会重复使用该类型,因此C#的动态泛型能力避免了C++静态模板可能导致的代码膨胀的问题。
2、C#泛型类型携带有丰富的元数据,因此C#的泛型类型可以应用于强大的反射技术。
3、C#的泛型采用“基类、接口、构造器,值类型/引用类型”的约束方式来实现对类型参数的“显示约束”,提高了类型安全的同时,也丧失了C++模板基于“签名”的隐式约束所具有的高灵活性

C#泛型继承:

C#除了可以单独声明泛型类型(包括类与结构)外,也可以在基类中包含泛型类型的声明。但基类如果是泛型类,它的类型要么以实例化,要么来源于子类(同样是泛型类型)声明的类型参数,看如下类型

class C<U,V>
class D:C<string,int>
class E<U,V>:C<U,V>
class F<U,V>:C<string,int>
class G:C<U,V> //非法

E类型为C类型提供了U、V,也就是上面说的来源于子类

F类型继承于C<string,int>,个人认为可以看成F继承一个非泛型的类

G类型为非法的,因为G类型不是泛型,C是泛型,G无法给C提供泛型的实例化

泛型类型的成员:

泛型类型的成员可以使用泛型类型声明中的类型参数。但类型参数如果没有任何约束,则只能在该类型上使用从System.Object继承的公有成员。如下图:

泛型接口:

泛型接口的类型参数要么已实例化,要么来源于实现类声明的类型参数

泛型委托:

泛型委托支持在委托返回值和参数上应用参数类型,这些参数类型同样可以附带合法的约束

代码如下:

delegate bool MyDelegate<T>(T value);
class MyClass
{
    static bool F(int i){...}
    static bool G(string s){...}
    static void Main()
    {
        MyDelegate<string> p2 = G;
        MyDelegate<int> p1 = new MyDelegate<int>(F);
    }
}

泛型方法:

1、C#泛型机制只支持“在方法声明上包含类型参数”——即泛型方法。
2、C#泛型机制不支持在除方法外的其他成员(包括属性、事件、索引器、构造器、析构器)的声明上包含类型参数,但这些成员本身可以包含在泛型类型中,并使用泛型类型的类型参数。
3、泛型方法既可以包含在泛型类型中,也可以包含在非泛型类型中。

泛型方法声明:如下

public static int FunctionName<T>(T value){...}

泛型方法的重载:

public void Function1<T>(T a);
public void Function1<U>(U a);

这样是不能构成泛型方法的重载。因为编译器无法确定泛型类型T和U是否不同,也就无法确定这两个方法是否不同

public void Function1<T>(int x);
public void Function1(int x);

这样可以构成重载

public void Function1<T>(T t) where T:A;
public void Function1<T>(T t) where T:B;

这样不能构成泛型方法的重载。因为编译器无法确定约束条件中的A和B是否不同,也就无法确定这两个方法是否不同

泛型方法重写:

在重写的过程中,抽象类中的抽象方法的约束是被默认继承的。如下:

代码如下:

abstract class Base
{
    public abstract T F<T,U>(T t,U u) where U:T;
    public abstract T G<T>(T t) where T:IComparable;
}
class MyClass:Base
{
    public override X F<X,Y>(X x,Y y){...}
    public override T G<T>(T t) where T:IComparable{}
}

对于MyClass中两个重写的方法来说
F方法是合法的,约束被默认继承
G方法是非法的,指定任何约束都是多余的

泛型约束:

1、C#泛型要求对“所有泛型类型或泛型方法的类型参数”的任何假定,都要基于“显式的约束”,以维护C#所要求的类型安全。
2、“显式约束”由where子句表达,可以指定“基类约束”,“接口约束”,“构造器约束”,“值类型/引用类型约束”共四种约束。
3、“显式约束”并非必须,如果没有指定“显式约束”,范型类型参数将只能访问System.Object类型中的公有方法。例如:在开始的例子中,定义的那个obj成员变量。比如我们在开始的那个例子中加入一个Test1类,在它当中定义两个公共方法Func1、Func2,如下图:

下面就开始分析这些约束:

基类约束:



代码如下:

class A
    {
        public void Func1()
        { }
    }
    class B
    {
        public void Func2()
        { }
    }
    class C<S, T>
        where S : A
        where T : B
    {
        public C(S s,T t)
        {
            //S的变量可以调用Func1方法
            s.Func1();
            //T的变量可以调用Func2方法
            t.Func2();
        }
    }

接口约束:



代码如下:

interface IA<T>
    {
        T Func1();
    }
    interface IB
    {
        void Func2();
    }
    interface IC<T>
    {
        T Func3();
    }
    class MyClass<T, V>
        where T : IA<T>
        where V : IB, IC<V>
    {
        public MyClass(T t,V v)
        {
            //T的对象可以调用Func1
            t.Func1();
            //V的对象可以调用Func2和Func3
            v.Func2();
            v.Func3();
        }
    }

构造器约束:

代码如下:

class A
        {
            public A()
            { }
        }
        class B
        {
            public B(int i)
            { }
        }
        class C<T> where T : new()
        {
            T t;
            public C()
            {
                t = new T();
            }
        }
        class D
        {
            public void Func()
            {
                C<A> c = new C<A>();
                C<B> d = new C<B>();
            }
        }

d对象在编译时报错:The type B must have a public parameterless constructor in order to use it as parameter 'T' in the generic type or method C<T>

注意:C#现在只支持无参的构造器约束

此时由于我们为B类型写入了一个有参构造器,使得系统不会再为B自动创建一个无参的构造器,但是如果我们将B类型中加一个无参构造器,那么对象d的实例化就不会报错了。B类型定义如下:

代码如下:

class B
        {
            public B()
            { }
            public B(int i)
            { }
        }

值类型/引用类型:

代码如下:

public struct A { }
        public class B { }
        public class C<T> where T : struct
        {
        }
        C<A> c1 = new C<A>();
        C<B> c2 = new C<B>();

c2对象在编译时报错:The type 'B' must be a non-nullable value type in order to use it as parameter 'T' in the generic type or methor 'C<T>'

总结:

1、C#的泛型能力由CLR在运行时支持,它既不同于C++在编译时所支持的静态模板,也不同于Java在编译器层面使用“擦拭法”支持的简单的泛型。
2、C#的泛型支持包括类、结构、接口、委托四种泛型类型,以及方法成员。
3、C#的泛型采用“基类,接口,构造器,值类型/引用类型”的约束方式来实现对类型参数的“显式约束”,它不支持C++模板那样的基于签名的隐式约束。

(0)

相关推荐

  • C#泛型委托的用法实例分析

    本文实例讲述了C#泛型委托的用法.分享给大家供大家参考.具体分析如下: 冒泡排序大家都知道,例如一个整形数组,可以用冒泡排序来使它按从小到大的顺序排序, 但它仅限于了按整形数组来排序,如何做到按任意类型进行排序呢,例如按一个类的某个属性进行排序? 举例说明:定义一组以类MEmployee为元素的数组,按MEmployee的Salary属性进行排序,类似的可以引伸为对其他类型的比较 元素类定义: public class MEmployee { public string Name { get;

  • c#泛型学习详解 创建线性链表

    术语表 generics:泛型type-safe:类型安全collection: 集合compiler:编译器run time:程序运行时object: 对象.NET library:.Net类库value type: 值类型box: 装箱unbox: 拆箱implicity: 隐式explicity: 显式linked list: 线性链表node: 结点indexer: 索引器 泛型是什么? 很多人觉得泛型很难理解.我相信这是因为他们通常在了解泛型是用来解决什么问题之前,就被灌输了大量的理论

  • C#基础之泛型委托实例教程

    本文实例讲述了C#中泛型委托的用法,并以示例形式较为详细的进行了用法分析.分享给大家供大家参考之用.具体如下: 首先,泛型委托是委托的一种特殊形式,虽然感觉看上去比较怪异,其实在使用的时候跟委托差不多,不过泛型委托更具有类型通用性. 就拿C#里最常见的委托EventHandler打比方.在.NET 2.0以前,也就是泛型出现以前,普通的事件处理函数都由EventHandler定义,如下: public delegate void EventHandler(object sender, Event

  • c# in depth的泛型实现实例代码

    1.默认值表达式如果已经明确了要处理的类型,也就知道了它的"默认"值.不知道要引用的类型,就不能直接指定默认值.不能使用null,因为它可能不是一个引用类型,不能使用0,因为它可能不是数值类型.虽然很少需要用到默认值,但它偶尔还是有用的.Dictionary<TKey,TValue>就是一个好的例子,它有个TryValue方法,它的作用有点儿像对数值类型进行处理的TryParse方法:他用一个输出参数来接收你打算获取的值,用一个Boolean返回值显示它是否成功.这意味着方

  • 详解C#中的泛型以及编程中使用泛型的优点

    2.0 版 C# 语言和公共语言运行时 (CLR) 中增加了泛型.泛型将类型参数的概念引入 .NET Framework,类型参数使得设计如下类和方法成为可能:这些类和方法将一个或多个类型的指定推迟到客户端代码声明并实例化该类或方法的时候.例如,通过使用泛型类型参数 T,您可以编写其他客户端代码能够使用的单个类,而不致引入运行时强制转换或装箱操作的成本或风险,如下所示: // Declare the generic class. public class GenericList<T> { vo

  • 编写高质量代码改善C#程序——使用泛型集合代替非泛型集合(建议20)

    软件开发过程中,不可避免会用到集合,C#中的集合表现为数组和若干集合类.不管是数组还是集合类,它们都有各自的优缺点.如何使用好集合是我们在开发过程中必须掌握的技巧.不要小看这些技巧,一旦在开发中使用了错误的集合或针对集合的方法,应用程序将会背离你的预想而运行. 建议20:使用泛型集合代替非泛型集合 在建议1中我们知道,如果要让代码高效运行,应该尽量避免装箱和拆箱,以及尽量减少转型.很遗憾,在微软提供给我们的第一代集合类型中没有做到这一点,下面我们看ArrayList这个类的使用情况: Array

  • C#泛型用法实例分析

    本文实例分析了C#泛型用法.分享给大家供大家参考.具体分析如下: 这里演示如何创建具有单个类型参数的自定义泛型列表类,以及如何实现 IEnumerable<T> 以便对列表的内容启用 foreach 迭代.此示例还演示客户端代码如何通过指定类型参数来创建该类的实例,以及该类型参数的约束如何实现对类型参数执行其他操作. using System; using System.Collections; using System.Collections.Generic; using System.Te

  • C#实现利用泛型将DataSet转为Model的方法

    本文实例讲述了C#实现利用泛型将DataSet转为Model的方法.分享给大家供大家参考.具体如下: 因为网站需要用C#开发,习惯了java的泛型,所以看了一下C#下,也可以这样做,随便写了一个. public static List<T> PutAllVal<T>(T entity, DataSet ds) where T : new() { List<T> lists = new List<T>(); if (ds.Tables[0].Rows.Coun

  • C#通过反射创建自定义泛型

    本文以实例形式讲述了C#通过反射创建自定义泛型的实现方法,分享给大家供大家参考.具体如下: 比如有这样一个泛型:Demo.GenericsSimple<T,TT> 我想要通过反射创建一个Demo.GenericsSimple<string,int>的实例可以通过下面的格式进行创建: System.Reflection.Assembly.GetExecutingAssembly().CreateInstance("命名空间.User`形参数量N[[1形参类型全名,形参类型所

  • C#泛型编程介绍

    例子代码: 复制代码 代码如下: class Program    {        static void Main(string[] args)        {            int obj = 2;            Test<int> test = new Test<int>(obj);            Console.WriteLine("int:" + test.obj);            string obj2 = &qu

  • C语言泛型编程实例教程

    本文实例讲述了C语言泛型编程的方法,分享给大家供大家参考之用.具体分析如下: 首先,泛型编程让你编写完全一般化并可重复使用的算法,其效率与针对某特定数据类型而设计的算法相同.在C语言中,可以通过一些手段实现这样的泛型编程.这里介绍一种方法--通过无类型指针void* 看下面的一个实现交换两个元素内容的函数swap,以整型int为例: void swap(int* i1,int* i2){ int temp; temp = *i1; *i1 = *i2; *i2 = temp; } 当你想交换两个

  • C++ 泛型编程详解

    泛型编程与面向对象编程的目标相同,即使重用代码和抽象通用概念的技术更加简单.但是面向对象编程强调编程的数据方面,泛型编程强调的是独立于特定数据类型. 这一篇介绍一下 C++ 编程中与面向对象并列的另一大分支--泛型编程,这一篇主要介绍函数模板.类模板和成员模板三大部分 如有侵权,请联系删除,如有错误,欢迎大家指正,谢谢 泛型编程 模板是泛型编程的一种重要思想,STL(Standard Template Library,标准模板库)是采用模板实现的一个实例 函数模板 对比函数重载(同一作用域内函数

  • C++泛型编程基本概念详解

    目录 1.什么是泛型编程? 2.函数模板 (1)函数模板概念 (2)函数模板格式 (3)函数模板的原理 (4)函数模板的实例化 (5)模板参数的匹配原则 3.类模板 (1)类模板的定义格式 (2)类模板的实例化 总结 1.什么是泛型编程? 比如说,我们如何实现一个通用的交换函数呢?int型.double型.char型的交换 void Swap(int& left, int& right) { int temp = left; left = right; right = temp; } vo

  • C++ 函数的介绍

    目录 一.基础 二.参数 三.返回类型 四.函数重载与解析 五.内联函数 1.constexpr函数 六.函数指针 七.思考 1.我们常常会见到如下代码,是由什么作用? 2.可以用别名定义一个函数类型吗? 一.基础 函数:封装了一段代码,可以在一次执行过程中被反复调用,包含函数头和函数体: 函数头: 函数名称(标识符),用于后续的调用: 形式参数,代表函数的输入参数: 返回类型,函数执行完成后返回结果的类型: 函数体:一个语句块(block),包含具体的计算逻辑: 函数的声明与定义: 函数声明只

  • C++泛型编程Generic Programming的使用

    目录 一.容器 array vector deque list map 键值对key/value 二.迭代器iterator(泛型指针) 三.泛型算法Generic Programming insert()插入 erase()删除 find()用于无序搜索,搜素范围[first, last), 返回iterator, 找不到则返回last copy() 复制 泛型编程最初提出时的动机很简单直接:发明一种语言机制,能够帮助实现一个通用的标准容器库. 所谓通用的标准容器库,就是要能够做到,比如用一个

  • 浅谈Go1.18中的泛型编程

    目录 前言 以前的Go泛型 泛型是什么 Go的泛型 泛型函数 泛型类型 类型集合 和接口的差异 总结 前言 经过这几年的千呼万唤,简洁的Go语言终于在1.18版本迎来泛型编程.作为一门已经有了14年历史的强类型语言,很难相信它到现在才开始有一个正式的泛型. 以前的Go泛型 虽然直到1.18版本才加入泛型,但是在2014年便有相关的讨论要在Go中加入泛型设计.但是由于各种原因没有实现.而之后的接口(interface)的提出,让泛型进一步搁置.但是由于接口的缺陷,最终Go团队还是在1.18的版本中

  • C++泛型编程函(数模板+类模板)

    目录 一.函数模板 1.函数模板介绍 2.函数模板与重载函数的关系 3.函数模板实现机制 二.类模板 1.类模板基本语法 2.类模板内函数的整体布局[分文件使用类模板] 3.类模板的static与模板类的static 4.数组实现万能容器 前言: 由于C++是静态语言,也就是说使用一个数据的时候必须先指定类型,这样的操作在编译后变量的类型是无法轻易改变的,就导致扩展性太差.或者一个函数需要很多次重载的时候,代码显得冗杂,由此产生了C++函数模板. 一.函数模板 1.函数模板介绍 ① 函数模板的产

  • 基于C++泛型编程职工管理系统

    目录 一.泛型编程思想 二.单链表是什么? 1.图示 2.链表的节点结构[节点类] 3.链表类 三.泛型编程核心 1.实现数据类 2.实现链表类 四.运行截图 1.主菜单 2.查看信息 3.更换数据类型 4.再次显示所有信息[抛转] 五.源码 前言: 前面介绍到了C++的泛型编程,并实现了万能容器,不过那使用的是数组,今天呢咱带大家实践一下使用泛型技术,结合单链表实现一个职工管理系统.保证大家看完之后有所感悟. 一.泛型编程思想 所谓泛型就是类型不固定,只需修改少量代码就可以扩展为其他类型的应用

  • C语言的模板与泛型编程你了解吗

    目录 模板与泛型编程浅谈 摘要(Effective C++): 模板与泛型编程简单介绍 函数模板 模板编译 类模板 为什么我们需要模板特例化? 总结 模板与泛型编程浅谈 摘要(Effective C++): ​ C++template的最初发展动机很直接:让我们得以建立“类型安全”的容器如vector,list和map.然而当愈多人用上templates时,他们发现template有能力完成愈多可能的变化.容器当然很好,但泛型编程(generic programming)——写出的代码和其所处理

随机推荐