Python Matplotlib数据可视化模块使用详解

目录
  • 前言
  • 1 matplotlib 开发环境搭建
  • 2 绘制基础
    • 2.1 绘制直线
    • 2.2 绘制折线
    • 2.3 设置标签文字和线条粗细
    • 2.4 绘制一元二次方程的曲线 y=x^2
    • 2.5 绘制正弦曲线和余弦曲线
  • 3 绘制散点图
  • 4 绘制柱状图
  • 5 绘制饼状图
  • 6 绘制直方图
  • 7 绘制等高线图
  • 8 绘制三维图
  • 总结

本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍。

通过阅读本文,你可以:

  • 了解什么是 Matplotlib
  • 掌握如何用 Matplotlib 绘制各种图形(柱状图、饼状图、直方图等)
  • 掌握如何定制图形的颜色和样式
  • 掌握如何用 Matplotlib 绘制三维图

前言

为了将数据变成所有人都喜欢的图形,就需要使用本文要介绍的数据可视化库Matplotlib。当然,还有很多类似的程序库。但 Matplotlib 的功能更强大,而且可以很容易与Numpy、Pandas 等程序库结合在一起使用。

Matplotlib 是一个 Python 的 2D 绘图库。通过 Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等。学习 Matplotlib,可让数据可视化,更直观的真实给用户。使数据更加客观、更具有说服力。 Matplotlib 是 Python的库,又是开发中常用的库。

1 matplotlib 开发环境搭建

如果使用的是 Anaconda Python 开 发 环 境 , 那 么Matplotlib 已 经 被 集 成 进Anaconda,并不需要单独安装。

如果使用的是标准的Python 开发环境,可以使用下面的命令安装 Matplotlib,语法格式如下:

pip install matplotlib

如果要了解 Matplotlib 更详细的情况,请访问官方网站。网址如下:https://matplotlib.org

安装完 Matplotlib 后,可以测试一下 Matplotlib 是否安装成功。进入 Python 的环境使用下面的语句导入 matplotlib.pyplot 模块。如果不出错,就说明 Matplotlib 已经安装成功了。

import matplotlib.pyplot as plt

2 绘制基础

在使用 Matplotlib 绘制图形时,其中有两个最为常用的场景。一个是画点,一个是画线。

pyplot 基本方法的使用如下。

2.1 绘制直线

在使用 Matplotlib 绘制线性图时,其中最简单的是绘制线图。在下面的实例代码中,使用 Matplotlib 绘制了一个简单的直线。具体实现过程如下:

  • 导入模块 pyplot,并给它指定别名 plt,以免反复输入 pyplot。在模块 pyplot中包含很多用于生产图表的函数。
  • 将绘制的直线坐标传递给函数 plot()。
  • 通过函数 plt.show()打开 Matplotlib 查看器,显示绘制的图形。

【示例 1】使用 matplotlib 根据两点绘制一条线

import matplotlib.pyplot as plt
#将(0,1)点和(2,4)连起来
plt.plot([0,2],[1,4])
plt.show()

2.2 绘制折线

在上述的实例代码中,使用两个坐标绘制一条直线,接下来使用平方数序列 1、4、9、16 和 25 来绘制一个折线图。

【示例 2】使用 matplotlib 绘制折线图

import matplotlib.pyplot as plt
x=[1,2,3,4,5]
squares=[1,4,9,16,25]
plt.plot(x,squares)
plt.show()

2.3 设置标签文字和线条粗细

在上面的实例直线结果不够完美,开发者可以绘制的线条样式进行灵活设置。例如:可以设置线条的粗细、设置文字等。

【示例 3】使用 matplotlib 绘制折线图并设置样

import matplotlib.pyplot as plt
datas=[1,2,3,4,5]
squares=[1,4,9,16,25]
plt.plot(datas,squares,linewidth=5)
#设置线条宽度#设置图标标题,并在坐标轴上添加标签plt.title('Numbers',fontsize=24)
plt.xlabel('datas',fontsize=14)
plt.ylabel('squares',fontsize=14)
plt.show()

Matplotlib 默认情况不支持中文,可以使用以下简单的方法来解决:

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签

【示例 4】解决标签、标题中的中文问题

import matplotlib.pyplot as plt
datas=[1,2,3,4,5]
squares=[1,4,9,16,25]
plt.plot(datas,squares,linewidth=5)
#设置线条宽度#设置中文乱码问题
plt.rcParams['font.sans-serif'] = ['SimHei']
#设置图标标题,并在坐标轴上添加标签
plt.title('标题设置',fontsize=24)
plt.xlabel('x 轴',fontsize=14)
plt.ylabel('y 轴',fontsize=14)
plt.show()

2.4 绘制一元二次方程的曲线 y=x^2

Matplotlib 有很多函数用于绘制各种图形,其中 plot 函数用于曲线,需要将 200 个点的x 坐标和 Y 坐标分别以序列的形式传入 plot 函数,然后调用 show 函数显示绘制的图形。一元二次方程的曲线。

【示例 5】使用 matplotlib 绘制一元二次方程曲线

import matplotlib.pyplot as plt
#200 个点的 x 坐标
x=range(-100,100)
#生成 y 点的坐标
y=[i**2 for i in x ]
#绘制一元二次曲线
plt.plot(x,y)
#调用 savefig 将一元二次曲线保存为 result.jpg
#plt.savefig('result.jpg') #如果直接写成 plt.savefig('cos')  会生成 cos.png
plt.show()

2.5 绘制正弦曲线和余弦曲线

使用 plt 函数绘制任何曲线的第一步都是生成若干个坐标点(x,y),理论上坐标点是越多越好。本例取 0 到 10 之间 100 个等差数作为 x 的坐标,然后将这 100 个 x 坐标值一起传入 Numpy 的 sin 和 cos 函数,就会得到 100 个 y 坐标值,最后就可以使用 plot 函数绘制正弦曲线和余弦曲线。

【示例 6】使用 matplotlib 绘制正弦曲线和余弦曲线

import matplotlib.pyplot as plt
import numpy as np
#生成 x 的坐标(0-10 的 100 个等差数列)
x=np.linspace(0,10,100)
sin_y=np.sin(x)
#绘制正弦曲线
plt.plot(x,sin_y)
#绘制余弦曲线
cos_y=np.cos(x)
plt.plot(x,cos_y)
plt.show()

上面的示例可以看到,调用两次 plot 函数,会将 sin 和 cos 曲线绘制到同一个二维坐标系中,如果想绘制到两张画布中,可以调用 subplot()函数将画布分区。

import matplotlib.pyplot as plt
import numpy as np
#将画布分为区域,将图画到画布的指定区域
x=np.linspace(1,10,100)
#将画布分为 2 行 2 列,将图画到画布的 1 区域
plt.subplot(2,2,1)
plt.plot(x,np.sin(x))
plt.subplot(2,2,3)
plt.plot(x,np.cos(x))
plt.show()

3 绘制散点图

使用 scatter 函数可以绘制随机点,该函数需要接收 x坐标和 y 坐标的序列。

【示例 8】使用 matplotlib 绘制 sin()函数的散点图

import matplotlib.pyplot as plt
import numpy as np
#画散点图
x=np.linspace(0,10,100)
#生成 0 到 10 中 100 个等差数
plt.scatter(x,np.sin(x))
plt.show()

【示例 9】绘制 10 种大小 100 种颜色的散点图

import matplotlib.pyplot as plt
import numpy as np
#  画 10 种大小, 100 种颜色的散点图
np.random.seed(0)
x=np.random.rand(100)
y=np.random.rand(100)
colors=np.random.rand(100)
size=np.random.rand(100)*1000
plt.scatter(x,y,c=colors,s=size,alpha=0.7)
plt.show()

作为线性图的替代,可以通过向 plot() 函数添加格式字符串来显示离散值。 可以使用如表 2-2 格式化字符。

颜色的缩写如下:

【示例 10】绘制不同种类不同颜色的线

import matplotlib.pyplot as plt
import numpy as np
#不同种类不同颜色的线
x=np.linspace(0,10,100)
plt.plot(x,x+0,'-g')	#实线  绿色
plt.plot(x,x+1,'--c')	#虚线 浅蓝色
plt.plot(x,x+2,'-.k')	#点划线 黑色
plt.plot(x,x+3,'-r')	#实线  红色
plt.plot(x,x+4,'o')	#点   默认是蓝色
plt.plot(x,x+5,'x')	#叉叉  默认是蓝色
plt.plot(x,x+6,'d')	#砖石  红色
plt.show()

【示例 11】添加图例

#不同种类不同颜色的线并添加图例
x=np.linspace(0,10,100)
plt.plot(x,x+0,'-g',label='-g')	#实线  绿色
plt.plot(x,x+1,'--c',label='--c')	#虚线 浅蓝色
plt.plot(x,x+2,'-.k',label='-.k')	#点划线 黑色
plt.plot(x,x+3,'-r',label='-r')	#实线  红色
plt.plot(x,x+4,'o',label='o')	#点   默认是蓝色
plt.plot(x,x+5,'x',label='x')	#叉叉  默认是蓝色
plt.plot(x,x+6,'dr',label='dr')	#砖石  红色
#添加图例右下角 lower right	左上角 upper left  边框  透明度  阴影  边框宽度
plt.legend(loc='lower right',fancybox=True,framealpha=1,shadow=True,borderpad=1)
plt.show()

4 绘制柱状图

使用 bar 函数可以绘制柱状图。柱状图需要水平的x 坐标值,以及每一个 x 坐标值对应的 y 坐标值,从而形成柱状的图。柱状图主要用来纵向对比和横向对比的。例如,根据年份对销售收据进行纵向对比,x 坐标值就表示年份,y 坐标值表示销售数据。

【示例 12】使用 bar()绘制柱状图,并设置柱的宽度

import matplotlib.pyplot as plt
import numpy as np
x=[1980,1985,1990,1995]
x_labels=['1980 年','1985 年','1990 年','1995 年']
y=[1000,3000,4000,5000]
plt.bar(x,y,width=3)
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
plt.xticks(x,x_labels)
plt.xlabel('年份')
plt.ylabel('销量')
plt.title('根据年份销量对比图')
plt.show()

需要注意的是 bar 函数的宽度并不是像素宽度。bar 函数会根据二维坐标系的尺寸,以及 x 坐标值的多少,自动确定每一个柱的宽度,而 width 指定的宽度就是这个标准柱宽度的倍数。该参数值可以是浮点数,如 0.5,表示柱的宽度是标准宽度的 0.5 倍。

【示例 13】使用 bar()和 barh()函数绘制柱状图

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
x=np.arange(5)
y=np.random.randint(-5,5,5)
print(x,y)
# 将画布分隔成一行两列
plt.subplot(1,2,1)
#在第一列中画图
v_bar=plt.bar(x,y)
#在第一列的画布中 0 位置画一条蓝线
plt.axhline(0,color='blue',linewidth=2)
plt.subplot(1,2,2)
#barh 将 y 和 x 轴对换 竖着方向为 x 轴
h_bar=plt.barh(x,y,color='red')
#在第二列的画布中 0 位置处画蓝色的线
plt.axvline(0,color='red',linewidth=2)
plt.show()

【示例 14】对柱状图的部分柱状设置颜色

import matplotlib.pyplot as plt
import numpy as np
np.random.seed(0)
x=np.arange(5)
y=np.random.randint(-5,5,5)
v_bar=plt.bar(x,y,color='lightblue')
for bar,height in zip(v_bar,y):
    if height<0:
        bar.set(edgecolor='darkred',color='lightgreen',linewidth=3)
plt.show()

【示例 15】使用 bar()绘制三天中三部电影的票房变化

import matplotlib.pyplot as plt
import numpy as np
#三天中三部电影的票房变化
real_names=['千与千寻','玩具总动员 4','黑衣人:全球追缉']
real_num1=[5453,7548,6543]
real_num2=[1840,4013,3421]
real_num3=[1080,1673,2342]
#生成 x	第 1 天   第 2 天   第 3 天
x=np.arange(len(real_names))
x_label=['第{}天'.format(i+1) for i in range(len(real_names))]
#绘制柱状图#设置柱的宽度
width=0.3
plt.bar(x,real_num1,color='g',width=width,label=real_names[0])
plt.bar([i+width for i in x],real_num2,color='b',width=width,label=real_names[1])
plt.bar([i+2*width for i in x],real_num3,color='r',width=width,label=real_names[2])
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
#修改 x 坐标
plt.xticks([i+width for i in x],x_label)
#添加图例plt.legend() #添加标题
plt.title('3 天的票房数')
plt.show()

5 绘制饼状图

pie 函数可以绘制饼状图,饼图主要是用来呈现比例的。只要传入比例数据即可。

【示例 16】绘制饼状图

#导入模块
import matplotlib.pyplot as plt
import numpy as np
#准备男、女的人数及比例
man=71351
woman=68187
man_perc=man/(woman+man)
woman_perc=woman/(woman+man) #添加名称
labels=['男','女'] #添加颜色
colors=['blue','red'] #绘制饼状图  pie
plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签
# labels  名称 colors:颜色,explode=分裂  autopct 显示百分比
paches,texts,autotexts=plt.pie([man_perc,woman_perc],labels=labels,colors=colors,explode=(0,0.05),autopct='%0.1f%%')
#设置饼状图中的字体颜色
for text in autotexts:
	text.set_color('white')
#设置字体大小
for text in texts+autotexts:
	text.set_fontsize(20)
plt.show()

6 绘制直方图

直方图与柱状图的分格类似,都是由若干个柱组成,但直方图和柱状图的含义却有很大的差异。直方图

是用来观察分布状态的,而柱状图是用来看每一个 X 坐标对应的 Y 的值的。也就是说,直方图关注的是分布,并不关心具体的某个值,而柱状图关心的是具体的某个值。使用 hist函数绘制直方图。

【示例 17】绘制直方图

import numpy as np
import matplotlib.pyplot as plt
#频次直方图,均匀分布
#正太分布
x=np.random.randn(1000)
#画正太分布图
# plt.hist(x)
plt.hist(x,bins=100) #装箱的操作,将 10 个柱装到一起及修改柱的宽度
plt.show()

【示例 18】同一画布绘制三个直方图

import numpy as np
import matplotlib.pyplot as plt
#几个直方图画到一个画布中,第一个参数期望  第二个均值
x1=np.random.normal(0,0.8,1000)
x2=np.random.normal(-2,1,1000)
x3=np.random.normal(3,2,1000)
#参数分别是 bins:装箱,alpha:透明度
kwargs=dict(bins=100,alpha=0.4)
plt.hist(x1,**kwargs)
plt.hist(x2,**kwargs)
plt.hist(x3,**kwargs)
plt.show()

7 绘制等高线图

【 示例 19 】使用matplotlib 绘制等高线图

#导入模块
import matplotlib.pyplot as plt
import numpy as np
x=np.linspace(-10,10,100)
y=np.linspace(-10,10,100)
#计算 x 和 y 的相交点 a
X,Y=np.meshgrid(x,y)
# 计算 Z 的坐标
Z=np.sqrt(X**2+Y**2)
plt.contourf(X,Y,Z)
plt.contour(X,Y,Z)
# 颜色越深表示值越小,中间的黑色表示 z=0.
plt.show()

8 绘制三维图

使用 pyplot 包和 Matplotlib 绘制三维图。

【示例 20】使用 Matplotlib 绘制三维图

import matplotlib.pyplot as plt
#导入 3D 包
from mpl_toolkits.mplot3d import Axes3D
#创建 X、Y、Z 坐标
X=[1,1,2,2]
Y=[3,4,4,3]
Z=[1,100,1,1]
fig = plt.figure()
#  创建了一个 Axes3D 的子图放到 figure 画布里面
ax = Axes3D(fig)
ax.plot_trisurf(X, Y, Z)
plt.show()

总结

以上就是我对数据可视化模块 Matplotlib知识点的详细介绍。

到此这篇关于Python Matplotlib数据可视化模块使用详解的文章就介绍到这了,更多相关Python Matplotlib内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python数据分析之Matplotlib数据可视化

    目录 1.前言 2.Matplotlib概念 3.Matplotlib.pyplot基本使用 3.数据展示 3.1如何选择展示方式 3.2绘制折线图 3.3绘制柱状图 3.3.1普通柱状图 3.3.2堆叠柱状图 3.3.3分组柱状图 3.3.4饼图 4.绘制子图 1.前言 数据展示,即数据可视化,是数据分析的第五个步骤,大部分人对图形敏感度高于数字,好的数据展示方式能让人快速发现问题或规律,找到数据背后隐藏的价值. 2.Matplotlib概念 Matplotlib 是 Python 中常用的

  • Python数据可视化之matplotlib.pyplot绘图的基本参数详解

    目录 1.matplotlib简介 2.图形组成元素的函数用法 2.1. figure():背景颜色 2.2 xlim()和 ylim():设置 x,y 轴的数值显示范围 2.3 xlabel()和 ylabel():设置 x,y 轴的标签文本 2.4 grid():绘制刻度线的网格线 2.5 axhline():绘制平行于 x 轴额度水平参考线 2.6 axvspan():绘制垂直于 x 轴的参考区域 2.7 xticks(),yticks() 2.8 annotate():添加图形内容细节的

  • Python数据分析应用之Matplotlib数据可视化详情

    目录 简述 掌握绘图基础语法与基本参数 掌握pyplot基础语法 pyplot中的基础绘图语法 包含子图的基础语法 调节线条的rc参数 调节字体的rc参数 分析特征间的关系 绘制散点图 绘制2000-2017年个季度过敏生产总值散点图 绘制2000-2017年各季度国民生产总值散点图 绘制折线图 绘制2000-2017年各季度过敏生产总值折线图 2000~ 2017年各季度国民生产总值点线图 2000~ 2017年各季度国民生产总值折线散点图 任务实现 任务1 任务2 分析特征内部数据分布与分散

  • Python matplotlib数据可视化图绘制

    目录 前言 1.折线图 2.直方图 3.箱线图 4.柱状图 5.饼图 6.散点图 前言 导入绘图库: import matplotlib.pyplot as plt import numpy as np import pandas as pd import os 读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来) os.chdir(r'E:\jupyter\数据挖掘\数据与代码') df = pd.read_csv('air_data.csv',na_values= '-

  • python数据可视化matplotlib绘制折线图示例

    目录 plt.plot()函数各参数解析 各参数具体含义为: x,y color linestyle linewidth marker 关于marker的参数 plt.plot()函数各参数解析 plt.plot()函数的作用是绘制折线图,它的参数有很多,常用的函数参数如下: plt.plot(x,y,color,linestyle,linewidth,marker,markersize,markerfacecolor,markeredgewidth,markeredgecolor) 各参数具体

  • Python利用matplotlib模块数据可视化绘制3D图

    目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

  • Python中的数据可视化matplotlib与绘图库模块

    目录 一.条形图bar() 二.直方图 三.折线图 四.散点图+直线图 五.饼图 六.箱型图 七.plot函数参数 八.图像标注参数 九.Matplolib应用 matplotlib官方文档:https://matplotlib.org/stable/users/index.html matplotlib是一个绘图库,它可以创建常用的统计图,包括条形图.箱型图.折线图.散点图.饼图和直方图. 一.条形图bar() import matplotlib.pyplot as plt from matp

  • Python数据可视化之使用matplotlib绘制简单图表

    目录 一.绘制折线图 二.绘制柱形图或堆积图形 三.绘制条形图或堆积条形图 四.绘制堆积面积图 五.绘制直方图 六.绘制饼图或者圆环图 七.绘制散点图或气泡图 八.绘制箱形图 九.绘制雷达图 十.绘制误差棒图 总结 一.绘制折线图 使用plot()绘制折线图 常用的参数: x:表示x轴的数据 y:表示y轴的数据 fmt:表示快速设置条样式的格式字符串. label:表示应用于图例的标签文本. plot()会返回一个包含Line2D类对象(代表线条)的列表. plot()函数的语法格式: plot

  • Python Matplotlib数据可视化模块使用详解

    目录 前言 1 matplotlib 开发环境搭建 2 绘制基础 2.1 绘制直线 2.2 绘制折线 2.3 设置标签文字和线条粗细 2.4 绘制一元二次方程的曲线 y=x^2 2.5 绘制正弦曲线和余弦曲线 3 绘制散点图 4 绘制柱状图 5 绘制饼状图 6 绘制直方图 7 绘制等高线图 8 绘制三维图 总结 本文主要介绍python 数据可视化模块 Matplotlib,并试图对其进行一个详尽的介绍. 通过阅读本文,你可以: 了解什么是 Matplotlib 掌握如何用 Matplotlib

  • Python matplotlib的spines模块实例详解

    目录 spines 模块详解 Spine 类 Spine 类的定义 Spine 类参数 创建 Spine 对象的实例 创建直线型 Spine 并添加到 axes spine_type=‘circle’ 默认的 Spine 对象的存储和调用 Spine 对象的方法 set_position(self, position) set_bounds() 用法示例 创建多个 yaxis 偏移 axis 多 vertices 的 path 总结 spines 模块详解 matplotlib 设计了一个 sp

  • python Matplotlib数据可视化(2):详解三大容器对象与常用设置

    上一篇博客中说到,matplotlib中所有画图元素(artist)分为两类:基本型和容器型.容器型元素包括三种:figure.axes.axis.一次画图的必经流程就是先创建好figure实例,接着由figure去创建一个或者多个axes,然后通过axes实例调用各种方法来添加各种基本型元素,最后通过axes实例本身的各种方法亦或者通过axes获取axis实例实现对各种元素的细节操控. 本篇博客继续上一节的内容,展开介绍三大容器元素创建即通过三大容器可以完成的常用设置. 1 figure 1.

  • Python数据可视化绘图实例详解

    目录 利用可视化探索图表 1.数据可视化与探索图 2.常见的图表实例 数据探索实战分享 1.2013年美国社区调查 2.波士顿房屋数据集 利用可视化探索图表 1.数据可视化与探索图 数据可视化是指用图形或表格的方式来呈现数据.图表能够清楚地呈现数据性质, 以及数据间或属性间的关系,可以轻易地让人看图释义.用户通过探索图(Exploratory Graph)可以了解数据的特性.寻找数据的趋势.降低数据的理解门槛. 2.常见的图表实例 本章主要采用 Pandas 的方式来画图,而不是使用 Matpl

  • Python+matplotlib实现绘制等高线图示例详解

    目录 前言 1. 等高线图概述 什么是等高线图? 等高线图常用场景 绘制等高线图步骤 案例展示 2. 等高线图属性 设置等高线颜色 设置等高线透明度 设置等高线颜色级别 设置等高线宽度 设置等高线样式 3. 显示轮廓标签 4. 填充颜色 5. 添加颜色条说明 总结 前言 我们在往期对matplotlib.pyplot()方法学习,到现在我们已经会绘制折线图.柱状图.散点等常规的图表啦(往期的内容如下,大家可以方便查看往期内容) Python matplotlib底层原理解析 Python利用 m

  • python matplotlib 绘图 和 dpi对应关系详解

    我就废话不多说啦! dpi=1 600×400 dpi=2 1200×800 dpi=3 1800×1200 ........ dpi=21 (21×600)×(21×400) ---> 12600×8400 示例代码: ............... ............... plt_temp=y_axis plt_temp.resize(len(y_axis) , 1) plt_arr=np.concatenate((plt_arr,plt_temp ), axis=1) #print

  • python Matplotlib数据可视化(1):简单入门

    1 matplot入门指南 matplotlib是Python科学计算中使用最多的一个可视化库,功能丰富,提供了非常多的可视化方案,基本能够满足各种场景下的数据可视化需求.但功能丰富从另一方面来说也意味着概念.方法.参数繁多,让许多新手望而却步. 据我了解,大部分人在对matplotlib接触不深时都是边画图边百度,诸如这类的问题,我想大家都似曾相识:Python如何画散点图,matplotlib怎么将坐标轴标签旋转45度,怎么设置图例字体大小等等.无论针对哪一个问题,往往都有多种解决方法,搜索

  • Python Matplotlib绘制动画的代码详解

    目录 matplotlib 动画 人口出生率 男女人口总数 雨滴 matplotlib 动画 我们想制作一个动画,其中正弦和余弦函数在屏幕上逐步绘制.首先需要告诉matplotlib我们想要制作一个动画,然后必须指定想要在每一帧绘制什么.一个常见的错误是重新绘制每一帧的所有内容,这会使整个过程非常缓慢.相反地,只能更新必要的内容,因为我们知道许多内容不会随着帧的变化而改变.对于折线图,我们将使用set_data方法更新绘图,剩下的工作由matplotlib完成. 注意随着动画移动的终点标记.原因

  • Python实现数据的序列化操作详解

    目录 Json 模块 dumps()函数 dump()函数 loads()函数 load()函数 Pickle 模块 dumps()函数 dump()函数 loads()函数 load()函数 总结 ​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块.这两个模块主要区别如下: json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式: json 是我们可以直观阅读的,而 p

  • Python安装依赖(包)模块方法详解

    Python模块,简单说就是一个.py文件,其中可以包含我们需要的任意Python代码.迄今为止,我们所编写的所有程序都包含在单独的.py文件中,因此,它们既是程序,同时也是模块.关键的区别在于,程序的设计目标是运行,而模块的设计目标是由其他程序导入并使用. 不是所有程序都有相关联的.py文件-比如说,sys模块就内置于Python中,还有些模块是使用其他语言(最常见的是C语言)实现的.不过,Python的大多数库文件都是使用Python实现的,因此,比如说,我们使用了语句import coll

随机推荐