Python实现多元线性回归的梯度下降法

目录
  • 1. 读取数据
  • 2.定义代价函数
  • 3. 梯度下降
  • 4.可视化展示

1. 读取数据

首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可。这里以data.csv为例,这里做的是二元回归。导入相关库,及相关代码如下。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = np.loadtxt("data.csv", delimiter=",")
# 提取特征数据与标签
x_data = data[:,0:-1]
y_data = data[:,-1]

2.定义代价函数

回归模型形如:

接下来我们需要初始化相关参数,并定义出代价函数。因为存在多个系数参数,这里代价函数的写法与一元回归时的情况略有不同,稍微有所调整。具体如下:

# 初始化一系列参数
# 截距
theta0 = 0
# 系数
theta1 = 0
theta2 = 0

# 学习率
learning_rate = 0.0001
# 初始化迭代次数
n_iterables = 1000

# 定义代价函数(损失函数)
def compute_mse(theta0, theta1, theta2, x_data, y_data):
    total_error = 0
    for i in range(len(x_data)):
        # 计算损失 真实值:y_data  预测值h(x)=theta0 + theta1*x1 + theta2*x2
        total_error += (y_data[i] - (theta0 + theta1 * x_data[i, 0] + theta2 * x_data[i, 1])) ** 2

    mse_ = total_error / len(x_data) / 2
    return mse_

3. 梯度下降

多元回归的梯度下降与一元回归的差不多,在一元回归中只需要求一个导数,而现在求多个偏导数。代码过程如下:

def gradient_descent(x_data, y_data, theta0, theta1, theta2, learning_rate, n_iterables):
    m = len(x_data)

    # 循环 --> 迭代次数
    for i in range(n_iterables):
        # 初始化 theta0 theta1 theta2 的偏导值
        theta0_grad = 0
        theta1_grad = 0
        theta2_grad = 0

        # 计算偏导的总和再平均
        # 遍历m次
        for j in range(m):
            theta0_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j])
            theta1_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j]) * x_data[
                j, 0]
            theta2_grad += (1 / m) * ((theta1 * x_data[j, 0] + theta2 * x_data[j, 1] + theta0) - y_data[j]) * x_data[
                j, 1]

        # 更新theta
        theta0 = theta0 - (learning_rate * theta0_grad)
        theta1 = theta1 - (learning_rate * theta1_grad)
        theta2 = theta2 - (learning_rate * theta2_grad)
    return theta0, theta1, theta2

print(f"开始:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")
print("开始运行")
theta0,theta1,theta2 = gradient_descent(x_data,y_data,theta0,theta1,theta2,learning_rate,n_iterables)
print(f"迭代{n_iterables}次后:截距theta0={theta0},theta1={theta1},theta2={theta2},损失={compute_mse(theta0,theta1,theta2,x_data,y_data)}")

执行结果输出如下:

1000次迭代之后,损失值由23.64变为0.3865。

4.可视化展示

可视化展示常常作为机器学习过程的补充,可以使得机器学习的效果更为生动,直观。

# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)
plt.show()

# 可视化散点分布
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(x_data[:,0],x_data[:,1],y_data)

# 绘制预期平面
# 构建x
x_0 = x_data[:,0]
x_1 = x_data[:,1]

# 生成网格矩阵
x_0,x_1 = np.meshgrid(x_0,x_1)

y_hat = theta0 + theta1*x_0 + theta2*x_1

# 绘制3D图
ax.plot_surface(x_0,x_1,y_hat)

# 设置标签
ax.set_xlabel("Miles")
ax.set_ylabel("nums")
ax.set_zlabel("Time")

plt.show()

散点图输出如下:

加上拟合回归面后如图所示:

到此这篇关于Python实现多元线性回归的梯度下降法的文章就介绍到这了,更多相关Python梯度下降法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pytorch实现线性回归以及多元回归

    本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下 最近在学习pytorch,现在把学习的代码放在这里,下面是github链接 直接附上github代码 # 实现一个线性回归 # 所有的层结构和损失函数都来自于 torch.nn # torch.optim 是一个实现各种优化算法的包,调用的时候必须是需要优化的参数传入,这些参数都必须是Variable x_train = np.array([[3.3],[4.4],[5.5],[6.71],[6.93

  • python梯度下降法的简单示例

    梯度下降法的原理和公式这里不讲,就是一个直观的.易于理解的简单例子. 1.最简单的情况,样本只有一个变量,即简单的(x,y).多变量的则可为使用体重或身高判断男女(这是假设,并不严谨),则变量有两个,一个是体重,一个是身高,则可表示为(x1,x2,y),即一个目标值有两个属性. 2.单个变量的情况最简单的就是,函数hk(x)=k*x这条直线(注意:这里k也是变化的,我们的目的就是求一个最优的   k).而深度学习中,我们是不知道函数的,也就是不知道上述的k.   这里讨论单变量的情况: 在不知道

  • python实现随机梯度下降法

    看这篇文章前强烈建议你看看上一篇python实现梯度下降法: 一.为什么要提出随机梯度下降算法 注意看梯度下降法权值的更新方式(推导过程在上一篇文章中有) 也就是说每次更新权值都需要遍历整个数据集(注意那个求和符号),当数据量小的时候,我们还能够接受这种算法,一旦数据量过大,那么使用该方法会使得收敛过程极度缓慢,并且当存在多个局部极小值时,无法保证搜索到全局最优解.为了解决这样的问题,引入了梯度下降法的进阶形式:随机梯度下降法. 二.核心思想 对于权值的更新不再通过遍历全部的数据集,而是选择其中

  • python实现梯度下降法

    本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下 使用工具:Python(x,y) 2.6.6 运行环境:Windows10 问题:求解y=2*x1+x2+3,即使用梯度下降法求解y=a*x1+b*x2+c中参数a,b,c的最优值(监督学习) 训练数据: x_train=[1, 2], [2, 1],[2, 3], [3, 5], [1,3], [4, 2], [7, 3], [4, 5], [11, 3], [8, 7] y_train=[7, 8, 10,

  • python实现机器学习之多元线性回归

    总体思路与一元线性回归思想一样,现在将数据以矩阵形式进行运算,更加方便. 一元线性回归实现代码 下面是多元线性回归用Python实现的代码: import numpy as np def linearRegression(data_X,data_Y,learningRate,loopNum): W = np.zeros(shape=[1, data_X.shape[1]]) # W的shape取决于特征个数,而x的行是样本个数,x的列是特征值个数 # 所需要的W的形式为 行=特征个数,列=1 这

  • Python实现批量梯度下降法(BGD)拟合曲线

    1. 导入库 import numpy as np #矩阵运算 import matplotlib.pyplot as plt #可视化 import random #产生数据扰动 2. 产生数据 拟合曲线 y = 2 × x2 + x + 1 X_m = np.mat([[i**2, i, 1] for i in range(-10,10)]) #矩阵类型,用于运算 y_m = np.mat([[2*x[0,0]+x[0,1]+1+random.normalvariate(0,1)] for

  • 关于多元线性回归分析——Python&SPSS

    原始数据在这里 1.观察数据 首先,用Pandas打开数据,并进行观察. import numpy import pandas as pd import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv('Folds5x2_pp.csv') data.head() 会看到数据如下所示: 这份数据代表了一个循环发电厂,每个数据有5列,分别是:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力).我

  • Python实现梯度下降法的示例代码

    目录 1.首先读取数据集 2.初始化相关参数 3.定义计算代价函数–>MSE 4.梯度下降 5.执行 1.首先读取数据集 导包并读取数据,数据自行任意准备,只要有两列,可以分为自变量x和因变量y即可即可. import numpy as np import matplotlib.pyplot as plt data = np.loadtxt("data.csv", delimiter=",") x_data = data[:, 0] y_data = data

  • Python实现多元线性回归的梯度下降法

    目录 1. 读取数据 2.定义代价函数 3. 梯度下降 4.可视化展示 1. 读取数据 首先要做的就是读取数据,请自行准备一组适合做多元回归的数据即可.这里以data.csv为例,这里做的是二元回归.导入相关库,及相关代码如下. import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D data = np.loadtxt("data.csv", delimiter

  • python机器学习逻辑回归随机梯度下降法

    目录 写在前面 随机梯度下降法 参考文献 写在前面 随机梯度下降法就在随机梯度上.意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的.全批量梯度下降是从一个点接着一点是有顺序的,全部数据点都要求梯度且有顺序. 全批量梯度下降虽然稳定,但速度较慢: SGD虽然快,但是不够稳定 随机梯度下降法 随机梯度下降法(Stochastic Gradient Decent, SGD)是对全批量梯度下降法计算效率的改进算法.本质上来说,我们预期随机梯度下降法得到的结果和全批量梯度下降法相接近:SGD的

  • Python编程实现线性回归和批量梯度下降法代码实例

    通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: import numpy as np import matplotlib.pyplot as plt import random class dataMinning: datasets = [] labelsets = [] addressD = '' #Data folder addressL = '' #Label folder npDatasets = np.zer

  • Python语言描述随机梯度下降法

    1.梯度下降 1)什么是梯度下降? 因为梯度下降是一种思想,没有严格的定义,所以用一个比喻来解释什么是梯度下降. 简单来说,梯度下降就是从山顶找一条最短的路走到山脚最低的地方.但是因为选择方向的原因,我们找到的的最低点可能不是真正的最低点.如图所示,黑线标注的路线所指的方向并不是真正的地方. 既然是选择一个方向下山,那么这个方向怎么选?每次该怎么走? 先说选方向,在算法中是以随机方式给出的,这也是造成有时候走不到真正最低点的原因. 如果选定了方向,以后每走一步,都是选择最陡的方向,直到最低点.

  • 梯度下降法介绍及利用Python实现的方法示例

    本文主要给大家介绍了梯度下降法及利用Python实现的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧. 梯度下降法介绍 梯度下降法(gradient descent),又名最速下降法(steepest descent)是求解无约束最优化问题最常用的方法,它是一种迭代方法,每一步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(因为在该方向上目标函数下降最快,这也是最速下降法名称的由来). 梯度下降法特点:越接近目标值,步长越小,下降速度越慢. 直观上

  • python+numpy+matplotalib实现梯度下降法

    这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总, 一.算法论述 梯度下降法(gradient  descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法.下面以求解线性回归为题来叙述: 设:一般的线性回归方程(拟合函数)为:(其中的值为1) 则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差): 我们现在的目的就是使得损失函数取得最小值,即目标函数为: 如果的值取到了0,意味着我们构造出了

随机推荐