基于Pytorch实现分类器的示例详解

目录
  • Softmax分类器
    • 定义
    • 训练
    • 测试
  • 感知机分类器
    • 定义
    • 训练
    • 测试

本文实现两个分类器: softmax分类器和感知机分类器

Softmax分类器

Softmax分类是一种常用的多类别分类算法,它可以将输入数据映射到一个概率分布上。Softmax分类首先将输入数据通过线性变换得到一个向量,然后将向量中的每个元素进行指数函数运算,最后将指数运算结果归一化得到一个概率分布。这个概率分布可以被解释为每个类别的概率估计。

定义

定义一个softmax分类器类:

class SoftmaxClassifier(nn.Module):
    def __init__(self,input_size,output_size):
        # 调用父类的__init__()方法进行初始化
        super(SoftmaxClassifier,self).__init__()
        # 定义一个nn.Linear对象,用于将输入特征映射到输出类别
        self.linear = nn.Linear(input_size,output_size)

    def forward(self,x):
        x = self.linear(x) # 传递给线性层
        return nn.functional.softmax(x,dim=1) # 得到概率分布

    def compute_accuracy(self,output,labels):
        preds = torch.argmax(output,dim=1) # 获取每个样本的预测标签
        correct = torch.sum(preds == labels).item() # 计算正确预测的数量
        accuracy = correct / len(labels) # 除以总样本数得到准确率
        return accuracy

如上定义三个方法:

  • __init__(self):构造函数,在类初始化时运行,调用父类的__init__()方法进行初始化
  • forward(self):模型前向计算过程
  • compute_accuracy(self):计算模型的预测准确率

训练

生成训练数据:

import numpy as np

# 生成随机样本(包含训练数据和测试数据)
def generate_rand_samples(dot_num=100):
    x_p = np.random.normal(3., 1, dot_num)
    y_p = np.random.normal(3., 1, dot_num)
    y = np.zeros(dot_num)
    C1 = np.array([x_p, y_p, y]).T
    x_n = np.random.normal(7., 1, dot_num)
    y_n = np.random.normal(7., 1, dot_num)
    y = np.ones(dot_num)
    C2 = np.array([x_n, y_n, y]).T
    x_n = np.random.normal(3., 1, dot_num)
    y_n = np.random.normal(7., 1, dot_num)
    y = np.ones(dot_num)*2
    C3 = np.array([x_n, y_n, y]).T
    x_n = np.random.normal(7, 1, dot_num)
    y_n = np.random.normal(3, 1, dot_num)
    y = np.ones(dot_num)*3
    C4 = np.array([x_n, y_n, y]).T
    data_set = np.concatenate((C1, C2, C3, C4), axis=0)
    np.random.shuffle(data_set)

    return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32)

X_train,y_train = generate_rand_samples()
y_train[y_train == -1] = 0

设置训练前的前置参数,并初始化分类器

num_inputs = 2  # 输入维度大小
num_outputs = 4  # 输出维度大小
learning_rate = 0.01  # 学习率
num_epochs = 2000 # 训练周期数

# 归一化数据 将数据特征减去均值再除以标准差
X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0)
y_train = y_train.astype(np.compat.long)

# 创建model并初始化
model = SoftmaxClassifier(num_inputs, num_outputs)
criterion = nn.CrossEntropyLoss() # 交叉熵损失
optimizer = optim.SGD(model.parameters(), lr=learning_rate)  # SGD优化器

训练:

# 遍历训练周期数
for epoch in range(num_epochs):
    outputs = model(torch.tensor(X_train))  # 前向传递计算
    loss = criterion(outputs,torch.tensor(y_train))  # 计算预测输出和真实标签之间的损失
    train_accuracy = model.compute_accuracy(outputs,torch.tensor(y_train))  # 计算模型当前训练周期中准确率

    optimizer.zero_grad()  # 清楚优化器中梯度
    loss.backward()  # 计算损失对模型参数的梯度
    optimizer.step()

    # 打印信息
    if (epoch + 1) % 10 == 0:
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")

运行:

Epoch [1820/2000], Loss: 0.9947, Accuracy: 0.9575
Epoch [1830/2000], Loss: 0.9940, Accuracy: 0.9600
Epoch [1840/2000], Loss: 0.9932, Accuracy: 0.9600
Epoch [1850/2000], Loss: 0.9925, Accuracy: 0.9600
Epoch [1860/2000], Loss: 0.9917, Accuracy: 0.9600
....

测试

生成测试并测试:

X_test, y_test = generate_rand_samples()  # 生成测试数据
X_test = (X_test- np.mean(X_test)) / np.std(X_test)  # 归一化
y_test = y_test.astype(np.compat.long)
predicts = model(torch.tensor(X_test))  # 获取模型输出
accuracy = model.compute_accuracy(predicts,torch.tensor(y_test))  # 计算准确度
print(f'Test Accuracy: {accuracy:.4f}')

输出:

Test Accuracy: 0.9725

绘制图像:

# 绘制图像
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1
y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))
Z = model(torch.tensor(np.c_[xx.ravel(), yy.ravel()], dtype=torch.float32)).argmax(dim=1).numpy()
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.4)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, s=20, edgecolor='k')
plt.show()

感知机分类器

实现与上述softmax分类器相似,此处实现sigmod感知机,采用sigmod作为分类函数,该函数可以将线性变换的结果映射为0到1之间的实数值,通常被用作神经网络中的激活函数

sigmoid感知机的学习算法与普通的感知机类似,也是采用随机梯度下降(SGD)的方式进行更新。不同之处在于,sigmoid感知机的输出是一个概率值,需要将其转化为类别标签。

通常使用阈值来决定输出值所属的类别,如将输出值大于0.5的样本归为正类,小于等于0.5的样本归为负类。

定义

# 感知机分类器
class PerceptronClassifier(nn.Module):
    def __init__(self, input_size,output_size):
        super(PerceptronClassifier, self).__init__()
        self.linear = nn.Linear(input_size,output_size)

    def forward(self, x):
        logits = self.linear(x)
        return torch.sigmoid(logits)

    def compute_accuracy(self, pred, target):
        pred = torch.where(pred >= 0.5, 1, -1)
        accuracy = (pred == target).sum().item() / target.size(0)
        return accuracy

给定一个输入向量(x1,x2,x3...xn),输出为y=σ(w⋅x+b)=1/(e^−(w⋅x+b))

训练

生成训练集:

def generate_rand_samples(dot_num=100):
    x_p = np.random.normal(3., 1, dot_num)
    y_p = np.random.normal(3., 1, dot_num)
    y = np.ones(dot_num)
    C1 = np.array([x_p, y_p, y]).T
    x_n = np.random.normal(6., 1, dot_num)
    y_n = np.random.normal(0., 1, dot_num)
    y = np.ones(dot_num)*-1
    C2 = np.array([x_n, y_n, y]).T
    data_set = np.concatenate((C1, C2), axis=0)
    np.random.shuffle(data_set)
    return data_set[:,:2].astype(np.float32),data_set[:,2].astype(np.int32)

X_train,y_train = generate_rand_samples()
X_test,y_test = generate_rand_samples()

该过程与上述softmax分类器相似:

num_inputs = 2
num_outputs = 1
learning_rate = 0.01
num_epochs = 200

# 归一化数据 将数据特征减去均值再除以标准差
X_train = (X_train - X_train.mean(axis=0)) / X_train.std(axis=0)

# 创建model并初始化
model = PerceptronClassifier(num_inputs, num_outputs)
optimizer = optim.SGD(model.parameters(), lr=learning_rate)  # SGD优化器

criterion = nn.functional.binary_cross_entropy

训练:

# 遍历训练周期数
for epoch in range(num_epochs):
    outputs = model(torch.tensor(X_train))
    labels = torch.tensor(y_train).unsqueeze(1)
    loss = criterion(outputs,labels.float())
    train_accuracy = model.compute_accuracy(outputs, labels)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch + 1) % 10 == 0:
        print(f"Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}, Accuracy: {train_accuracy:.4f}")

输出:

Epoch [80/200], Loss: -0.5429, Accuracy: 0.9550
Epoch [90/200], Loss: -0.6235, Accuracy: 0.9550
Epoch [100/200], Loss: -0.7015, Accuracy: 0.9500
Epoch [110/200], Loss: -0.7773, Accuracy: 0.9400
....

测试

X_test, y_test = generate_rand_samples() # 生成测试集
X_test = (X_test - X_test.mean(axis=0)) / X_test.std(axis=0)

test_inputs = torch.tensor(X_test)
test_labels = torch.tensor(y_test).unsqueeze(1)
with torch.no_grad():
    outputs = model(test_inputs)
    accuracy = model.compute_accuracy(outputs, test_labels)
    print(f"Test Accuracy: {accuracy:.4f}")

绘图:

x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1
y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1
xx, yy = torch.meshgrid(torch.linspace(x_min, x_max, 100), torch.linspace(y_min, y_max, 100))

# 预测每个点的类别
Z = torch.argmax(model(torch.cat((xx.reshape(-1,1), yy.reshape(-1,1)), 1)), 1)
Z = Z.reshape(xx.shape)

# 绘制分类图
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral,alpha=0.0)

# 绘制分界线
w = model.linear.weight.detach().numpy()  # 权重
b = model.linear.bias.detach().numpy()  # 偏置
x1 = np.linspace(x_min, x_max, 100)
x2 = (-b - w[0][0]*x1) / w[0][1]
plt.plot(x1, x2, 'k-')

# 绘制样本点
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=plt.cm.Spectral)
plt.show()

以上就是基于Pytorch实现分类器的示例详解的详细内容,更多关于Pytorch分类器的资料请关注我们其它相关文章!

(0)

相关推荐

  • 使用PyTorch训练一个图像分类器实例

    如下所示: import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np print("torch: %s" % torch.__version__) print("tortorchvisionch: %s" % torchvision.__version__) print(&

  • python深度学习之多标签分类器及pytorch实现源码

    目录 多标签分类器 多标签分类器损失函数 代码实现 多标签分类器 多标签分类任务与多分类任务有所不同,多分类任务是将一个实例分到某个类别中,多标签分类任务是将某个实例分到多个类别中.多标签分类任务有有两大特点: 类标数量不确定,有些样本可能只有一个类标,有些样本的类标可能高达几十甚至上百个 类标之间相互依赖,例如包含蓝天类标的样本很大概率上包含白云 如下图所示,即为一个多标签分类学习的一个例子,一张图片里有多个类别,房子,树,云等,深度学习模型需要将其一一分类识别出来. 多标签分类器损失函数 代

  • Python Pytorch深度学习之图像分类器

    目录 一.简介 二.数据集 三.训练一个图像分类器 1.导入package吧 2.归一化处理+贴标签吧 3.先来康康训练集中的照片吧 4.定义一个神经网络吧 5.定义一个损失函数和优化器吧 6.训练网络吧 7.在测试集上测试一下网络吧 8.分别查看一下训练效果吧 总结 一.简介 通常,当处理图像.文本.语音或视频数据时,可以使用标准Python将数据加载到numpy数组格式,然后将这个数组转换成torch.*Tensor 对于图像,可以用Pillow,OpenCV 对于语音,可以用scipy,l

  • 基于PyTorch实现一个简单的CNN图像分类器

    pytorch中文网:https://www.pytorchtutorial.com/ pytorch官方文档:https://pytorch.org/docs/stable/index.html 一. 加载数据 Pytorch的数据加载一般是用torch.utils.data.Dataset与torch.utils.data.Dataloader两个类联合进行.我们需要继承Dataset来定义自己的数据集类,然后在训练时用Dataloader加载自定义的数据集类. 1. 继承Dataset类并

  • Pytorch 实现计算分类器准确率(总分类及子分类)

    分类器平均准确率计算: correct = torch.zeros(1).squeeze().cuda() total = torch.zeros(1).squeeze().cuda() for i, (images, labels) in enumerate(train_loader): images = Variable(images.cuda()) labels = Variable(labels.cuda()) output = model(images) prediction = to

  • 基于Pytorch实现分类器的示例详解

    目录 Softmax分类器 定义 训练 测试 感知机分类器 定义 训练 测试 本文实现两个分类器: softmax分类器和感知机分类器 Softmax分类器 Softmax分类是一种常用的多类别分类算法,它可以将输入数据映射到一个概率分布上.Softmax分类首先将输入数据通过线性变换得到一个向量,然后将向量中的每个元素进行指数函数运算,最后将指数运算结果归一化得到一个概率分布.这个概率分布可以被解释为每个类别的概率估计. 定义 定义一个softmax分类器类: class SoftmaxCla

  • 基于pytorch的lstm参数使用详解

    lstm(*input, **kwargs) 将多层长短时记忆(LSTM)神经网络应用于输入序列. 参数: input_size:输入'x'中预期特性的数量 hidden_size:隐藏状态'h'中的特性数量 num_layers:循环层的数量.例如,设置' ' num_layers=2 ' '意味着将两个LSTM堆叠在一起,形成一个'堆叠的LSTM ',第二个LSTM接收第一个LSTM的输出并计算最终结果.默认值:1 bias:如果' False',则该层不使用偏置权重' b_ih '和' b

  • 人工智能学习Pytorch教程Tensor基本操作示例详解

    目录 一.tensor的创建 1.使用tensor 2.使用Tensor 3.随机初始化 4.其他数据生成 ①torch.full ②torch.arange ③linspace和logspace ④ones, zeros, eye ⑤torch.randperm 二.tensor的索引与切片 1.索引与切片使用方法 ①index_select ②... ③mask 三.tensor维度的变换 1.维度变换 ①torch.view ②squeeze/unsqueeze ③expand,repea

  • 人工智能学习Pytorch梯度下降优化示例详解

    目录 一.激活函数 1.Sigmoid函数 2.Tanh函数 3.ReLU函数 二.损失函数及求导 1.autograd.grad 2.loss.backward() 3.softmax及其求导 三.链式法则 1.单层感知机梯度 2. 多输出感知机梯度 3. 中间有隐藏层的求导 4.多层感知机的反向传播 四.优化举例 一.激活函数 1.Sigmoid函数 函数图像以及表达式如下: 通过该函数,可以将输入的负无穷到正无穷的输入压缩到0-1之间.在x=0的时候,输出0.5 通过PyTorch实现方式

  • 基于python及pytorch中乘法的使用详解

    numpy中的乘法 A = np.array([[1, 2, 3], [2, 3, 4]]) B = np.array([[1, 0, 1], [2, 1, -1]]) C = np.array([[1, 0], [0, 1], [-1, 0]]) A * B : # 对应位置相乘 np.array([[ 1, 0, 3], [ 4, 3, -4]]) A.dot(B) : # 矩阵乘法 ValueError: shapes (2,3) and (2,3) not aligned: 3 (dim

  • PHP基于phpqrcode类生成二维码的方法示例详解

    HP QR Code是一个PHP二维码生成类库,利用它可以轻松生成二维码,官网提供了下载和多个演示demo,查看地址: http://phpqrcode.sourceforge.net/ 下载官网提供的类库后,只需要使用phpqrcode.php就可以生成二维码了,当然您的PHP环境必须开启支持GD2. phpqrcode.php提供了一个关键的png()方法,其中 参数$text表示生成二位的的信息文本: 参数$outfile表示是否输出二维码图片 文件,默认否: 参数$level表示容错率,

  • 基于gin的golang web开发:路由示例详解

    Gin是一个用Golang编写的HTTP网络框架.它的特点是类似于Martini的API,性能更好.在golang web开发领域是一个非常热门的web框架. 启动一个Gin web服务器 使用下面的命令安装Gin go get -u github.com/gin-gonic/gin 在代码里添加依赖 import "github.com/gin-gonic/gin" 快速启动一个Gin服务器的代码如下 package main import "github.com/gin-

  • 支持PyTorch的einops张量操作神器用法示例详解

    目录 基础用法 高级用法 今天做visual transformer研究的时候,发现了einops这么个神兵利器,决定大肆安利一波. 先看链接:https://github.com/arogozhnikov/einops 安装: pip install einops 基础用法 einops的强项是把张量的维度操作具象化,让开发者"想出即写出".举个例子: from einops import rearrange # rearrange elements according to the

  • Python人工智能学习PyTorch实现WGAN示例详解

    目录 1.GAN简述 2.生成器模块 3.判别器模块 4.数据生成模块 5.判别器训练 6.生成器训练 7.结果可视化 1.GAN简述 在GAN中,有两个模型,一个是生成模型,用于生成样本,一个是判别模型,用于判断样本是真还是假.但由于在GAN中,使用的JS散度去计算损失值,很容易导致梯度弥散的情况,从而无法进行梯度下降更新参数,于是在WGAN中,引入了Wasserstein Distance,使得训练变得稳定.本文中我们以服从高斯分布的数据作为样本. 2.生成器模块 这里从2维数据,最终生成2

  • 人工智能学习Pytorch数据集分割及动量示例详解

    目录 1.数据集分割 2.正则化 3.动量和学习率衰减 1.数据集分割 通过datasets可以直接分别获取训练集和测试集. 通常我们会将训练集进行分割,通过torch.utils.data.random_split方法. 所有的数据都需要通过torch.util.data.DataLoader进行加载,才可以得到可以使用的数据集. 具体代码如下: 2. 2.正则化 PyTorch中的正则化和机器学习中的一样,不过设置方式不一样. 直接在优化器中,设置weight_decay即可.优化器中,默认

随机推荐