python pandas中DataFrame类型数据操作函数的方法

python数据分析工具pandas中DataFrame和Series作为主要的数据结构.

本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数。

1)查看DataFrame数据及属性

df_obj = DataFrame() #创建DataFrame对象
df_obj.dtypes #查看各行的数据格式
df_obj['列名'].astype(int)#转换某列的数据类型
df_obj.head() #查看前几行的数据,默认前5行
df_obj.tail() #查看后几行的数据,默认后5行
df_obj.index #查看索引
df_obj.columns #查看列名
df_obj.values #查看数据值
df_obj.describe() #描述性统计
df_obj.T #转置
df_obj.sort_values(by=['',''])#同上

2)使用DataFrame选择数据:

df_obj.ix[1:3] #获取1-3行的数据,该操作叫切片操作,获取行数据
df_obj.ix[columns_index] #获取列的数据
df_obj.ix[1:3,[1,3]]#获取1列3列的1~3行数据
df_obj[columns].drop_duplicates() #剔除重复行数据

3)使用DataFrame重置数据:

df_obj.ix[1:3,[1,3]]=1#所选位置数据替换为1

4)使用DataFrame筛选数据(类似SQL中的WHERE):

alist = ['023-18996609823']
df_obj['用户号码'].isin(alist) #将要过滤的数据放入字典中,使用isin对数据进行筛选,返回行索引以及每行筛选的结果,若匹配则返回ture
df_obj[df_obj['用户号码'].isin(alist)] #获取匹配结果为ture的行

5)使用DataFrame模糊筛选数据(类似SQL中的LIKE):

df_obj[df_obj['套餐'].str.contains(r'.*?语音CDMA.*')] #使用正则表达式进行模糊匹配,*匹配0或无限次,?匹配0或1次

6)使用DataFrame进行数据转换(后期补充说明)

df_obj['支局_维护线'] = df_obj['支局_维护线'].str.replace('巫溪分公司(.{2,})支局','\\1')#可以使用正则表达式
可以设置take_last=ture 保留最后一个,或保留开始一个.补充说明:注意take_last=ture已过时,请使用keep='last'

7)使用pandas中读取数据:

read_csv('D:\LQJ.csv',sep=';',nrows=2) #首先输入csv文本地址,然后分割符选择等等
df.to_excel('foo.xlsx',sheet_name='Sheet1');pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])#写入读取excel数据,pd.read_excel读取的数据是以DataFrame形式存储
df.to_hdf('foo.h5','df');pd.read_hdf('foo.h5','df')#写入读取HDF5数据

8)使用pandas聚合数据(类似SQL中的GROUP BY 或HAVING):

data_obj['用户标识'].groupby(data_obj['支局_维护线'])
data_obj.groupby('支局_维护线')['用户标识'] #上面的简单写法
adsl_obj.groupby('支局_维护线')['用户标识'].agg([('ADSL','count')])#按支局进行汇总对用户标识进行计数,并将计数列的列名命名为ADSL

9)使用pandas合并数据集(类似SQL中的JOIN):

merge(mxj_obj2, mxj_obj1 ,on='用户标识',how='inner')# mxj_obj1和mxj_obj2将用户标识当成重叠列的键合并两个数据集,inner表示取两个数据集的交集.

10)清理数据

df[df.isnull()]
df[df.notnull()]
df.dropna()#将所有含有nan项的row删除
df.dropna(axis=1,thresh=3) #将在列的方向上三个为NaN的项删除
df.dropna(how='ALL')#将全部项都是nan的row删除填充值
df.fillna(0)
df.fillna({1:0,2:0.5}) #对第一列nan值赋0,第二列赋值0.5
df.fillna(method='ffill') #在列方向上以前一个值作为值赋给NaN

实例

1. 读取excel数据

代码如下

import pandas as pd# 读取高炉数据,注意文件名不能为中文
data=pd.read_excel('gaolushuju_201501-03.xlsx', '201501', index_col=None, na_values=['NA'])
print data

测试结果如下

   燃料比 顶温西南 顶温西北 顶温东南 顶温东北
0  531.46  185  176  176  174
1  510.35  184  173  184  188
2  533.49  180  165  182  177
3  511.51  190  172  179  188
4  531.02  180  167  173  180
5  511.24  174  164  178  176
6  532.62  173  170  168  179
7  583.00  182  175  176  173
8  530.70  158  149  159  156
9  530.32  168  156  169  171
10 528.62  164  150  171  169

2. 切片处理,选取行或列,修改数据

代码如下:

data_1row=data.ix[1]
data_5row_2col=data.ix[0:5,[u'燃料比',u'顶温西南']
print data_1row,data_5row_2col
data_5row_2col.ix[0:1,0:2]=3

测试结果如下:

燃料比   510.35
顶温西南  184.00
顶温西北  173.00
顶温东南  184.00
顶温东北  188.00
Name: 1, dtype: float64
  燃料比 顶温西南
0 531.46  185
1 510.35  184
2 533.49  180
3 511.51  190
4 531.02  180
5 511.24  174
   燃料比 顶温西南
0  3.00   3
1  3.00   3
2 533.49  180
3 511.51  190
4 531.02  180
5 511.24  174

格式说明,data_5row_2col.ix[0:1,0:2],data_5row_2col.ix[0:1,[0,2]],选取部分行和列需加”[]”

3. 排序

代码如下:

print data_1row.sort_values()
print data_5row_2col.sort_values(by=u'燃料比')

测试结果如下:

顶温西北  173.00
顶温西南  184.00
顶温东南  184.00
顶温东北  188.00
燃料比   510.35
Name: 1, dtype: float64
   燃料比 顶温西南
1 510.35  184
5 511.24  174
3 511.51  190
4 531.02  180
0 531.46  185
2 533.49  180

4. 删除重复的行

代码如下:

print data_5row_2col[u'顶温西南'].drop_duplicates()#剔除重复行数据

测试结果如下:

0  185
1  184
2  180
3  190
5  174
Name: 顶温西南, dtype: int64

说明:从测试结果3中可以看出顶温西南index=2的数据与index=4的数据重复,测试结果4显示将index=4的顶温西南数据删除

以上这篇python pandas中DataFrame类型数据操作函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

您可能感兴趣的文章:

  • pandas修改DataFrame列名的方法
  • 对pandas的dataframe绘图并保存的实现方法
  • python中pandas.DataFrame对行与列求和及添加新行与列示例
  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)
  • pandas.DataFrame 根据条件新建列并赋值的方法
(0)

相关推荐

  • python中pandas.DataFrame的简单操作方法(创建、索引、增添与删除)

    前言 最近在网上搜了许多关于pandas.DataFrame的操作说明,都是一些基础的操作,但是这些操作组合起来还是比较费时间去正确操作DataFrame,花了我挺长时间去调整BUG的.我在这里做一些总结,方便你我他.感兴趣的朋友们一起来看看吧. 一.创建DataFrame的简单操作: 1.根据字典创造: In [1]: import pandas as pd In [3]: aa={'one':[1,2,3],'two':[2,3,4],'three':[3,4,5]} In [4]: bb=

  • 对pandas的dataframe绘图并保存的实现方法

    对dataframe绘图并保存: ax = df.plot() fig = ax.get_figure() fig.savefig('fig.png') 可以制定列,对该列各取值作统计: label_dis = df.label.value_counts() ax = label_dis.plot(title='label distribution', kind='bar', figsize=(18, 12)) fig = ax.get_figure() fig.savefig('label_d

  • python中pandas.DataFrame对行与列求和及添加新行与列示例

    本文介绍的是python中pandas.DataFrame对行与列求和及添加新行与列的相关资料,下面话不多说,来看看详细的介绍吧. 方法如下: 导入模块: from pandas import DataFrame import pandas as pd import numpy as np 生成DataFrame数据 df = DataFrame(np.random.randn(4, 5), columns=['A', 'B', 'C', 'D', 'E']) DataFrame数据预览: A

  • pandas修改DataFrame列名的方法

    在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>

  • pandas.DataFrame 根据条件新建列并赋值的方法

    实例如下所示: import numpy as np import pandas as pd data = {'city': ['Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen', 'Hangzhou', 'Chongqing'], 'year': [2016,2016,2015,2017,2016, 2016], 'population': [2100, 2300, 1000, 700, 500, 500]} frame = pd.DataFrame(

  • python pandas中DataFrame类型数据操作函数的方法

    python数据分析工具pandas中DataFrame和Series作为主要的数据结构. 本文主要是介绍如何对DataFrame数据进行操作并结合一个实例测试操作函数. 1)查看DataFrame数据及属性 df_obj = DataFrame() #创建DataFrame对象 df_obj.dtypes #查看各行的数据格式 df_obj['列名'].astype(int)#转换某列的数据类型 df_obj.head() #查看前几行的数据,默认前5行 df_obj.tail() #查看后几

  • python pandas中对Series数据进行轴向连接的实例

    有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现.操作的对象通常是Series. Ipython中的交互代码如下: In [17]: from pandas import Series,DataFrame In [18]: series1 = Series(range(2),index = ['a','b']) In [19]: series2 = Series(range(3),index = ['c','d','e']) In [20]: serie

  • Python Pandas中DataFrame.drop_duplicates()删除重复值详解

    目录 语法 参数 结果展示 扩展:识别重复值 总结 语法 df.drop_duplicates(subset = None, keep = 'first', inplace = False, ignore_index = False) 参数 1.subset:指定的标签或标签序列,仅删除这些列重复值,默认情况为所有列 2.keep:确定要保留的重复值,有以下可选项: first:保留第一次出现的重复值,默认 last:保留最后一次出现的重复值 False:删除所有重复值 3.inplace:是否

  • pandas中DataFrame重置索引的几种方法

    在pandas中,经常对数据进行处理 而导致数据索引顺序混乱,从而影响数据读取.插入等. 小笔总结了以下几种重置索引的方法: import pandas as pd import numpy as np df = pd.DataFrame(np.arange(20).reshape((5, 4)),columns=['a', 'b', 'c', 'd']) #得到df: a b c d 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 3 12 13 14 15 4 16 17 1

  • VBScript 中的字节数据操作函数

    Asc 和 AscB.AscW Asc 函数返回与字符串的第一个字母对应的 ANSI 字符代码. Asc(string) AscB 函数和包含字节数据的字符串一起使用.AscB 不是返回第一个字符的字符代码,而是返回首字节. AscW 是为使用 Unicode 字符的 32 位平台提供的.它返回 Unicode (宽型)字符代码,因此可以避免从 ANSI 到 Unicode 的代码转换. Chr 和 ChrB.ChrW Chr 函数返回与指定的 ANSI 字符代码相对应的字符. Chr(char

  • 在Python 3中实现类型检查器的简单方法

    示例函数 为了开发类型检查器,我们需要一个简单的函数对其进行实验.欧几里得算法就是一个完美的例子: def gcd(a, b): '''Return the greatest common divisor of a and b.''' a = abs(a) b = abs(b) if a < b: a, b = b, a while b != 0: a, b = b, a % b return a 在上面的示例中,参数 a 和 b 以及返回值应该是 int 类型的.预期的类型将会以函数注解的形式

  • 浅谈pandas中DataFrame关于显示值省略的解决方法

    python的pandas库是一个非常好的工具,里面的DataFrame更是常用且好用,最近是越用越觉得设计的漂亮,pandas的很多细节设计的都非常好,有待使用过程中发掘. 好了,发完感慨,说一下最近DataFrame遇到的一个细节: 在使用DataFrame中有时候会遇到表格中的value显示不完全,像下面这样: In: import pandas as pd longString = u'''真正的科学家应当是个幻想家:谁不是幻想家,谁就只能把自己称为实践家.人生的磨难是很多的, 所以我们

  • 浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)

    pandas为我们提供了多种切片方法,而要是不太了解这些方法,就会经常容易混淆.下面举例对这些切片方法进行说明. 数据介绍 先随机生成一组数据: In [5]: rnd_1 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_2 = [random.randrange(1,20) for x in xrange(1000)] ...: rnd_3 = [random.randrange(1,20) for x in xrange(1

  • Python Pandas中合并数据的5个函数使用详解

    目录 join 索引一致 索引不一致 merge concat 纵向拼接 横向拼接 append combine 前几天在一个群里面,看到一位朋友,说到自己的阿里面试,被问了一些关于pandas的使用.其中一个问题是:pandas中合并数据的5中方法. 今天借着这个机会,就为大家盘点一下pandas中合并数据的5个函数.但是对于每个函数,我这里不打算详细说明,具体用法大家可以参考pandas官当文档. join主要用于基于索引的横向合并拼接: merge主要用于基于指定列的横向合并拼接: con

  • Python pandas中apply函数简介以及用法详解

    目录 1.基本信息 2.语法结构 3.使用案例 3.1 DataFrame使用apply 3.2 Series使用apply 3.3 其他案例 4.总结 参考链接: 1.基本信息 ​ Pandas 的 apply() 方法是用来调用一个函数(Python method),让此函数对数据对象进行批量处理.Pandas 的很多对象都可以使用 apply() 来调用函数,如 Dataframe.Series.分组对象.各种时间序列等. 2.语法结构 ​ apply() 使用时,通常放入一个 lambd

随机推荐