24式加速你的Python(小结)

一,分析代码运行时间

第1式,测算代码运行时间

平凡方法

快捷方法(jupyter环境)

第2式,测算代码多次运行平均时间

平凡方法

快捷方法(jupyter环境)

第3式,按调用函数分析代码运行时间

平凡方法

快捷方法(jupyter环境)

第4式,按行分析代码运行时间

平凡方法

快捷方法(jupyter环境)

二,加速你的查找

第5式,用set而非list进行查找

低速方法

高速方法

第6式,用dict而非两个list进行匹配查找

低速方法

高速方法

三,加速你的循环

第7式,优先使用for循环而不是while循环

低速方法

高速方法

第8式,在循环体中避免重复计算

低速方法

高速方法

四,加速你的函数

第9式,用循环机制代替递归函数

低速方法

高速方法

第10式,用缓存机制加速递归函数

低速方法

高速方法

第11式,用numba加速Python函数

低速方法

高速方法

五,使用标准库函数进行加速

第12式,使用collections.Counter加速计数

低速方法

高速方法

第13式,使用collections.ChainMap加速字典合并

低速方法

高速方法

六,使用高阶函数进行加速

第14式,使用map代替推导式进行加速

低速方法

高速方法

第15式,使用filter代替推导式进行加速

低速方法

高速方法

七,使用numpy向量化进行加速

第16式,使用np.array代替list

低速方法

高速方法

第17式,使用np.ufunc代替math.func

低速方法

高速方法

第18式,使用np.where代替if

低速方法

高速方法

八,加速你的Pandas

第19式,使用csv文件读写代替excel文件读写

低速方法

高速方法

第20式,使用pandas多进程工具pandarallel

低速方法

高速方法

九,使用Dask进行加速

第21式,使用dask加速dataframe

低速方法

高速方法

第22式,使用dask.delayed进行加速

低速方法

高速方法

十,应用多线程多进程加速

第23式,应用多线程加速IO密集型任务

低速方法

高速方法

第24式,应用多进程加速CPU密集型任务

低速方法

高速方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 使用Pyrex来扩展和加速Python程序的教程

    Pyrex 是一种专门设计用来编写 Python 扩展模块的语言.根据 Pyrex Web 站点的介绍,"它被设计用来在友好易用的高级 Python 世界和凌乱的低级 C 世界之间搭建一个桥梁."虽然几乎所有的 Python 代码都可以作为有效的 Pyrex 代码使用,但是您可以在 Pyrex 代码中添加可选的静态类型声明,从而使得这些声明过的对象以 C 语言的速度运行. 加速 Python 从某种意义上来说,Pyrex 只是不断发展的 Python 类语言系列的一个部分:Jython

  • 详解如何利用Cython为Python代码加速

    引言 通常,在 Python 中写循环(特别是多重循环)非常的慢,在文章 //www.jb51.net/article/133807.htm中,我们的元胞自动机的状态更新函数 update_state 使用了两重循环,所以我们尝试用 Cython 重构该方法. 代码 我们在同文件夹下新建一个 update.pyx 文件,写入如下内容 import numpy as np cimport numpy as np cimport cython DTYPE = np.float ctypedef np

  • Python基于pyCUDA实现GPU加速并行计算功能入门教程

    本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能.分享给大家供大家参考,具体如下: Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长.而python 作为一门广泛使用的语言,具有 简单易学.语法简单.开发迅速等优点.作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献–pyCUDA. pyCUDA特点 CUDA完全的python实现 编码更为灵活.迅速.自适应调节

  • 让你Python到很爽的加速递归函数的装饰器

    今天我们会讲到一个[装饰器] 注记:链接"装饰器"指Python3教程中的装饰器教程.可以在这里快速了解什么是装饰器. @functools.lru_cache--进行函数执行结果备忘,显著提升递归函数执行时间. 示例:寻找宝藏.在一个嵌套元组tuple或列表list中寻找元素'Gold Coin' import time from functools import lru_cache def find_treasure(box): for item in box: if isinst

  • 使用numba对Python运算加速的方法

    有时候需要比较大的计算量,这个时候Python的效率就很让人捉急了,此时可以考虑使用numba 进行加速,效果提升明显~ (numba 安装貌似很是繁琐,建议安装Anaconda,里面自带安装好各种常用科学计算库) from numba import jit @jit def t(count=1000): total = 0 for i in range(int(count)): total += i return total 测试效果: (关于__wrapped__ 见我的博文: 浅谈解除装饰

  • 使用Python设置tmpfs来加速项目的教程

    对我当前工程进行全部测试需要花费不少时间.既然有 26 GB 空闲内存,为何不让其发挥余热呢? tmpfs 可以通过把文件系统保存在大内存中来加速测试的执行效率. 但优点也是缺点,tmpfs 只把结果保存在内存中,所以你必须自己编写脚本来把结果回写到磁盘上进行保留.而且这些脚本必须良好书写和执行,否则就要失去部分或全部的工作成果了. 一种常见的方法是直接在tmpfs文件夹中工作,然后把工作成果备份到磁盘上的一个文件夹中.当您的机器启动时你从那个备份文件夹恢复tmpfs文件夹.启动之后用cron同

  • 24式加速你的Python(小结)

    一,分析代码运行时间 第1式,测算代码运行时间 平凡方法 快捷方法(jupyter环境) 第2式,测算代码多次运行平均时间 平凡方法 快捷方法(jupyter环境) 第3式,按调用函数分析代码运行时间 平凡方法 快捷方法(jupyter环境) 第4式,按行分析代码运行时间 平凡方法 快捷方法(jupyter环境) 二,加速你的查找 第5式,用set而非list进行查找 低速方法 高速方法 第6式,用dict而非两个list进行匹配查找 低速方法 高速方法 三,加速你的循环 第7式,优先使用for

  • 新手入门Python编程的8个实用建议

    前言 我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很多伙伴是接触Python编程入门不久,也希望大家少走弯路,多少有些地方可以给大家借鉴. 目录先放出来 项目文件事先做好归档 永远不要手动修改源数据并且做好备份 做好路径的正确配置 代码必要的地方做好备注与说明 加速你的Python循环代码 可视化你的循环代码进度 使用高效的异常捕获工具 要多考虑代码健壮性 1.

  • 分享8点超级有用的Python编程建议(推荐)

    我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑总结出来的,现在在这里分享一下给大家,希望多少有些地方可以给大家借鉴.

  • Python实现图片滑动式验证识别方法

    1 abstract 验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中.传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现.目前最常见的一种形式就是"滑动拼图式" 2 内容概述 关于滑动式验证,最早由国内某网络安全公司首次提出的行为式验证,以滑动拼图解锁的方式呈现在世人面前.然后大概过了好几年之后,各种各样的滑动式验证产品都出来了,那么这些看似一样的产品,它们的安全性到底如何呢? 本文特意挑选出了一些后来者的小厂商的滑动式验证来

  • Python简洁优雅的推导式示例详解

    前言 推导式是从一个或者多个迭代器快速创建序列的一种方法.它可以将循环和条件判断结合,从而避免冗长的代码.推导式是典型的 Python 风格 Python语言有一种独特的推导式语法,相当于语法糖的存在,可以帮助你在某些场合写出较为精简酷炫的代码.但没有它,也不会有太多影响.Python语言有几种不同类型的推导式. 1. 列表推导式 列表推导式是一种快速生成列表的方式.其形式是用方括号括起来的一段语句,如下例子所示: lis = [x * x for x in range(1, 10)] prin

  • 深入浅析python 协程与go协程的区别

    进程.线程和协程 进程的定义: 进程,是计算机中已运行程序的实体.程序本身只是指令.数据及其组织形式的描述,进程才是程序的真正运行实例. 线程的定义: 操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位. 进程和线程的关系: 一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. CPU的最小调度单元是线程不是进程,所以单进程多线程也可以利用多核CPU. 协程的定义: 协程通过在线程中实现调度,避免了陷入内核级别的上下文切换

  • Anaconda多环境多版本python配置操作方法

    conda测试指南 在开始这个conda测试之前,你应该已经下载并安装好了Anaconda或者Miniconda 注意:在安装之后,你应该关闭并重新打开windows命令行. 一.Conda测试过程: 使用conda.首先我们将要确认你已经安装好了conda 配置环境.下一步我们将通过创建几个环境来展示conda的环境管理功能.使你更加轻松的了解关于环境的一切.我们将学习如何确认你在哪个环境中,以及如何做复制一个环境作为备份. 测试python.然后我们将检查哪一个版本的python可以被安装,

  • Python使用zip合并相邻列表项的方法示例

    本文实例讲述了Python使用zip合并相邻列表项的方法.分享给大家供大家参考,具体如下: 1>使用zip()函数和iter()函数,来合并相邻的列表项 >>> x [1, 2, 3, 4, 5, 6, 7, 8, 9] >>> zip(*[iter(x)]*2) [(1, 2), (3, 4), (5, 6), (7, 8)] >>> zip(*[iter(x)]*3) [(1, 2, 3), (4, 5, 6), (7, 8, 9)] >

  • Python zip()函数用法实例分析

    本文实例讲述了Python zip()函数用法.分享给大家供大家参考,具体如下: 这里介绍python中zip()函数的使用: >>> help(zip) Help on built-in function zip in module __builtin__: zip(...) zip(seq1 [, seq2 [...]]) -> [(seq1[0], seq2[0] ...), (...)] Return a list of tuples, where each tuple c

  • 浅谈Python中的zip()与*zip()函数详解

    前言 1.实验环境: Python 3.6: 2.示例代码地址:下载示例: 3.本文中元素是指列表.元组.字典等集合类数据类型中的下一级项目(可能是单个元素或嵌套列表). zip(*iterables)函数详解 zip()函数的定义 从参数中的多个迭代器取元素组合成一个新的迭代器: 返回: 返回一个zip对象,其内部元素为元组:可以转化为列表或元组: 传入参数:元组.列表.字典等迭代器. zip()函数的用法 当zip()函数中只有一个参数时 zip(iterable)从iterable中依次取

随机推荐