numpy库与pandas库axis=0,axis= 1轴的用法详解

对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值:

  • axis = 0 代表对横轴操作,也就是第0轴;
  • axis = 1 代表对纵轴操作,也就是第1轴;

numpy库中横轴、纵轴 axis 参数实例详解:

In [1]: import numpy as np
#生成一个3行4列的数组
In [2]: a = np.arange(12).reshape(3,4)
In [3]: a
Out[3]:
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
#axis= 0 对a的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [4]: a.sum(axis = 0)
Out[4]: array([12, 15, 18, 21])
#axis= 1 对a的纵轴进行操作,在运算的过程中其运算的方向表现为横向运算
In [5]: a.sum(axis = 1)
Out[5]: array([ 6, 22, 38])

pandas库DataFrame中横轴、纵轴 axis 参数实例详解:

In [8]: b = pd.DataFrame(np.arange(24).reshape(4,6))
In [9]: b
Out[9]:
  0  1  2  3  4  5
0  0  1  2  3  4  5
1  6  7  8  9 10 11
2 12 13 14 15 16 17
3 18 19 20 21 22 23
#axis= 0 对b的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [10]: b.sum(axis = 0)
Out[10]:
0  36
1  40
2  44
3  48
4  52
5  56
dtype: int64
#axis= 1 对b的横轴进行操作,在运算的过程中其运算的方向表现为纵向运算
In [11]: b.sum(axis = 1)
Out[11]:
0   15
1   51
2   87
3  123
dtype: int64

pandas库panel中axis 参数实例详解:

In [18]: np.arange(24).reshape(2,3,4)
Out[18]:
array([[[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]],

    [[12, 13, 14, 15],
    [16, 17, 18, 19],
    [20, 21, 22, 23]]])
#生成面板数据
In [19]: c = pd.Panel(np.arange(24).reshape(2,3,4))
In [24]: c
Out[24]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 3 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 2
Minor_axis axis: 0 to 3
#对Items axis轴的数据进行操作,也就是panel里面的0轴:
In [20]: c.sum(axis = 0)
Out[20]:
  0  1  2  3
0 12 14 16 18
1 20 22 24 26
2 28 30 32 34
对Major_axis axis轴的数据进行操作
In [21]: c.sum(axis = 1)
Out[21]:
  0  1
0 12 48
1 15 51
2 18 54
3 21 57
对Minor_axis axis轴的数据进行操作
In [22]: c.sum(axis = 2)
Out[22]:
  0  1
0  6 54
1 22 70
2 38 86

如果是2维数组,先横轴后纵轴;如果是3维数组,先最外层,然后一层一层按照先横轴再纵轴的逻辑进行匹配轴。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • numpy给array增加维度np.newaxis的实例

    如下所示: a[:, np.newaxis] # 给a最外层中括号中的每一个元素加[] a[np.newaxis, :] # 给a最外层中括号中所有元素加[] 以上这篇numpy给array增加维度np.newaxis的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

  • 对numpy.append()里的axis的用法详解

    如下所示: def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It mus

  • Python之NumPy(axis=0 与axis=1)区分详解

    python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码: >>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]], \ columns=["col1", "col2", "col3", "col4"]) >>>df col1 col2 col3 col4 0 1 1 1 1

  • numpy添加新的维度:newaxis的方法

    numpy中包含的newaxis可以给原数组增加一个维度 np.newaxis放的位置不同,产生的新数组也不同 一维数组 x = np.random.randint(1, 8, size=5) x Out[48]: array([4, 6, 6, 6, 5]) x1 = x[np.newaxis, :] x1 Out[50]: array([[4, 6, 6, 6, 5]]) x2 = x[:, np.newaxis] x2 Out[52]: array([[4], [6], [6], [6],

  • pytorch1.0中torch.nn.Conv2d用法详解

    Conv2d的简单使用 torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样. 在 torch 中,Conv2d 有几个基本的参数,分别是 in_channels 输入图像的深度 out_channels 输出图像的深度 kernel_size 卷积核大小,正方形卷积只为单个数字 stride 卷积步长,默认为1 padding 卷积是否造成尺寸丢失,1为不丢失 与tensorflow不一样的是,pytorch中的使用更加清晰化,我们可以使用这种方法定义输

  • numpy库与pandas库axis=0,axis= 1轴的用法详解

    对数据进行操作时,经常需要在横轴方向或者数轴方向对数据进行操作,这时需要设定参数axis的值: axis = 0 代表对横轴操作,也就是第0轴: axis = 1 代表对纵轴操作,也就是第1轴: numpy库中横轴.纵轴 axis 参数实例详解: In [1]: import numpy as np #生成一个3行4列的数组 In [2]: a = np.arange(12).reshape(3,4) In [3]: a Out[3]: array([[ 0, 1, 2, 3], [ 4, 5,

  • numpy库reshape用法详解

    numpy.reshape(重塑) 给数组一个新的形状而不改变其数据 numpy.reshape(a, newshape, order='C')参数: a:array_like 要重新形成的数组. newshape:int或tuple的整数 新的形状应该与原始形状兼容.如果是整数,则结果将是该长度的1-D数组.一个形状维度可以是-1.在这种情况下,从数组的长度和其余维度推断该值. order:{'C','F','A'}可选 使用此索引顺序读取a的元素,并使用此索引顺序将元素放置到重新形成的数组中

  • JS库之Highlight.js的用法详解

    官网:https://highlightjs.org/ 下载地址:https://highlightjs.org/download/ 下载到本地后,新建个页面测试 1.在head中加入css和js的引用 <head> <title>highlight</title> <meta http-equiv="content-type" content="text/html;charset=utf-8"> <link r

  • JS库之Waypoints的用法详解

    一款用于捕获各种滚动事件的插件?Waypoints.同时Waypoints还支持固定元素和无限滚动的功能,功力十分强大. 一.最简易的使用 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>waypoints的最简单使用</title> <!-- 定义css样式 --> <style>

  • python爬虫---requests库的用法详解

    requests是python实现的简单易用的HTTP库,使用起来比urllib简洁很多 因为是第三方库,所以使用前需要cmd安装 pip install requests 安装完成后import一下,正常则说明可以开始使用了. 基本用法: requests.get()用于请求目标网站,类型是一个HTTPresponse类型 import requests response = requests.get('http://www.baidu.com')print(response.status_c

  • python 标准库原理与用法详解之os.path篇

    os中的path 查看源码会看到,在os.py中有这样几行 if 'posix' in _names: name = 'posix' linesep = '\n' from posix import * #省略若干代码 elif 'nt' in _names: from nt import * try: from nt import _exit __all__.append('_exit') except ImportError: pass import ntpath as path #...

  • Python神器之Pampy模式匹配库的用法详解

    目录 Pampy 是哪路神仙 Pampy 的花式秀 匹配单个字符 匹配字典 匹配开头和结尾 总结 大家好,我是闲欢,一个很卷的程序员! 今天给大家分享一个炒鸡炒鸡简单又好用的神器——pampy. 我敢以我的荣誉保证,用了它之后,你写代码的效率可以蹭蹭蹭地提升! Pampy 是哪路神仙 首先普及一下模式匹配. 模式匹配即给定某种模式,用这种模式去检查序列或字符串是否符合这种模式,这种技术在自然语言处理中经常使用. Pampy 是 Python 的一个模式匹配类库,一个只有150行的类库,该库优雅.

  • python中openpyxl库用法详解

    目录 一.读取数据 1.1 从工作簿中取得工作表 1.2 从表中取得单元格 1.3 从表中取得行和列 二.写入数据 2.1 创建Workbook对象来创建Excel文件并保存 2.2 案例分析一 :爬取数据并保存excel中 2.3 案例分析二: 操作单元格中内容样式并保存数据 2.4 案例分析三:将列表数据写入excel中 openpyxl模块是一个读写Excel 文档的Python库,openpyxl是一个比较综合的工具,能够同时读取和修改Excel文档. openpyxl.load_wor

随机推荐