Python Opencv提取图片中某种颜色组成的图形的方法

主要目标识别图中红色的裂缝,尝试了几种不同的方法,最后发现比较每一点的RGB差值可以很好的解决这个问题,也就是提取图片中的红色相关信息。处理结果如下:

实现的代码如下,注意opencv读入的图片通道顺序是bgr:

import cv2
import matplotlib.pyplot as plt
imagepath = r'tear/11.jpg'
image = cv2.imread(imagepath)
height,width,channel = image.shape
for i in range(height):
  for j in range(width):
    b,g,r = image[i,j]
    if((r-b)>30 and (r-g)>30): #对蓝色进行判断,30不错
      b=0
      g=0
      r=0
    else:
      b=255
      g=255
      r=255

    image[i,j]=[r,g,b]
plt.figure(figsize=(20,10))
plt.imshow(image)
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python + OpenCV 实现LBP特征提取的示例代码

    背景 看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样 运行环境 Mac OS Python3.0 Anaconda3(集成了很多包,浏览器界面编程,清爽) 步骤 导入包 from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io,data_dir,filters, feature fro

  • python opencv人脸检测提取及保存方法

    注意这里提取到的人脸图片的保存地址要改成自己要保存的地址 opencv人脸的检测模型的路径也要更改为自己安装的opencv的人脸检测模型的路径 import cv2 save_path = 'F:\\face_photo_save\\chenym\\' cascade = cv2.CascadeClassifier("D:\\opencv249\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml&q

  • python-opencv颜色提取分割方法

    1.用于简单的对象检测.跟踪 2.简单前背景分割 #encoding:utf-8 #黄色检测 import numpy as np import argparse import cv2 image = cv2.imread('huang.png') color = [ ([0, 70, 70], [100, 255, 255])#黄色范围~这个是我自己试验的范围,可根据实际情况自行调整~注意:数值按[b,g,r]排布 ] #如果color中定义了几种颜色区间,都可以分割出来 for (lower

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • Python+OpenCV感兴趣区域ROI提取方法

    方法一:使用轮廓 步骤1 """src为原图""" ROI = np.zeros(src.shape, np.uint8) #感兴趣区域ROI proimage = src.copy() #复制原图 """提取轮廓""" proimage=cv2.cvtColor(proimage,cv2.COLOR_BGR2GRAY) #转换成灰度图 proimage=cv2.adaptiveThre

  • Python Opencv提取图片中某种颜色组成的图形的方法

    主要目标识别图中红色的裂缝,尝试了几种不同的方法,最后发现比较每一点的RGB差值可以很好的解决这个问题,也就是提取图片中的红色相关信息.处理结果如下: 实现的代码如下,注意opencv读入的图片通道顺序是bgr: import cv2 import matplotlib.pyplot as plt imagepath = r'tear/11.jpg' image = cv2.imread(imagepath) height,width,channel = image.shape for i in

  • Python实现提取图片中颜色并绘制成可视化图表

    目录 导入模块并加载图片 提取颜色并整合成表格 绘制图表 实战环节 今天小编来为大家分享一个有趣的可视化技巧,如何从图片中提取颜色然后绘制成可视化图表,如下图所示 在示例照片当中有着各种各样的颜色,我们将通过Python中的可视化模块以及opencv模块来识别出图片当中所有的颜色要素,并且将其添加到可视化图表的配色当中 导入模块并加载图片 那么按照惯例,第一步一般都是导入模块,可视化用到的模块是matplotlib模块,我们将图片中的颜色抽取出来之后会保存在颜色映射表中,所以要使用到colorm

  • 如何使用Python OpenCV提取物体轮廓详解

    通常提取物体的轮廓时,图像都存在噪声,提取效果并不理想.如提取下图的轮廓时, 提取代码: import cv2 img = cv2.imread("mouse.png") cv2.imshow("origin",img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,binary = cv2.threshold(gray,128,255,cv2.THRESH_BINARY) cv2.imshow("bina

  • python+opencv识别图片中的圆形

    本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这

  • Python实现去除图片中指定颜色的像素功能示例

    本文实例讲述了Python实现去除图片中指定颜色的像素功能.分享给大家供大家参考,具体如下: 这里用python去除图片白色像素 需要python和pil from PIL import Image import numpy as np import cv2 img2 = Image.open('./Amazing_COL_2Fix.bmp') img1 = Image.open('./Amazing_RGB_2L.bmp') # img1 = img1.convert('RGBA') img2

  • python提取具有某种特定字符串的行数据方法

    今天又帮女朋友处理了一下,她的实验数据,因为python是一年前经常用,最近找工作,用的是c,c++,python的有些东西忘记了,然后就一直催我,说我弄的慢,弄的慢,你自己弄啊,烦不烦啊,逼逼叨叨的,最后还不是我给弄好的?呵呵 好的,数据是这样的,我截个图 我用红括号括起来的,就是我所要提取的数据 其中lossstotal.txt是我要提取的原始数据,考虑两种方法去提取,前期以为所要提取行的数据是有一定规律的,后来发现,并不是,所以,我考虑用正则来提取,经过思考以后,完成了数据的提取,如下午所

  • Python+OpenCV实现图片中的圆形检测

    效果展示 中心的三个没检测到 import cv2 import numpy as np import matplotlib.pyplot as plt w = 20 h = 5 params = cv2.SimpleBlobDetector_Params() # Setup SimpleBlobDetector parameters. print('params') print(params) print(type(params)) # Filter by Area. params.filte

  • python实现给scatter设置颜色渐变条colorbar的方法

    python设置scatter颜色渐变的方法 参考代码如下: <span style="font-size:18px;">import matplotlib.pyplot as plt cm = plt.cm.get_cmap('RdYlBu') xy = range(20) z = xy sc = plt.scatter(xy, xy, c=z, vmin=0, vmax=20, s=35, cmap=cm) plt.colorbar(sc) plt.show()<

  • python 实现提取某个索引中某个时间段的数据方法

    如下所示: from elasticsearch import Elasticsearch import datetime import time import dateutil.parser class App(object): def __init__(self): pass def _es_conn(self): es = Elasticsearch() return es def get_data(self, day,start,end): index_ = "gather-apk-20

  • python opencv 实现读取、显示、写入图像的方法

    opencv是一个强大的图像处理和计算机视觉库,实现了很多实用算法,值得学习和深究下. opencv包安装 · 这里直接安装opencv-python包(非官方): pip install opencv-python 官方文档:https://opencv-python-tutroals.readthedocs.io/en/latest/ 1.读取图像 import cv2 image=cv2.imread("dog2.jpg",1) 说明: 第二个参数是一个标志,它指定了读取图像的方

随机推荐