Java多线程 volatile关键字详解

volatile

volatile是一种轻量同步机制。请看例子

MyThread25类

public class MyThread25 extends Thread{
  private boolean isRunning = true;

  public boolean isRunning()
  {
    return isRunning;
  }

  public void setRunning(boolean isRunning)
  {
    this.isRunning = isRunning;
  }

  public void run()
  {
    System.out.println("进入run了");
    while (isRunning == true){}
    System.out.println("线程被停止了");
  }
  public static void main(String[] args) throws InterruptedException {

    MyThread25 mt = new MyThread25();
    mt.start();
    Thread.sleep(1000);
    mt.setRunning(false);
    System.out.println("已设置为false");
  }
}

输出结果如下

进入run了
已设置为false

为什么程序始终不结束?说明mt.setRunning(false);没有起作用。

这里我们说下Java内存模型(JMM)

java虚拟机有自己的内存模型(Java Memory Model,JMM),JMM可以屏蔽掉各种硬件和操作系统的内存访问差异,以实现让java程序在各种平台下都能达到一致的内存访问效果。

JMM定义了线程和主内存之间的抽象关系:共享变量存储在主内存(Main Memory)中,每个线程都有一个私有的本地内存(Local Memory),本地内存保存了被该线程使用到的主内存的副本,线程对变量的所有操作都必须在本地内存中进行,而不能直接读写主内存中的变量。这三者之间的交互关系如下

出现上述运行结果的原因是,主内存isRunning = true, mt.setRunning(false)设置主内存isRunning = false,本地内存中isRunning仍然是true,线程用的是本地内存,所以进入了死循环。

在isRunning前加上volatile

private volatile boolean isRunning = true;

输出结果如下

进入run了
已设置为false
线程被停止了

volatile不能保证原子类线程安全

先看例子

MyThread26_0类,用volatile修饰num

public class MyThread26_0 extends Thread {
  public static volatile int num = 0;
  //使用CountDownLatch来等待计算线程执行完
  static CountDownLatch countDownLatch = new CountDownLatch(30);
  @Override
  public void run() {
    for(int j=0;j<1000;j++){
      num++;//自加操作
    }
    countDownLatch.countDown();
  }
  public static void main(String[] args) throws InterruptedException {
    MyThread26_0[] mt = new MyThread26_0[30];
    //开启30个线程进行累加操作
    for(int i=0;i<mt.length;i++){
      mt[i] = new MyThread26_0();
    }
    for(int i=0;i<mt.length;i++){
      mt[i].start();
    }
    //等待计算线程执行完
    countDownLatch.await();
    System.out.println(num);
  }
}

输出结果如下

25886

理论上,应该输出30000。原子操作表示一段操作是不可分割的,因为num++不是原子操作,这样会出现线程对过期的num进行自增,此时其他线程已经对num进行了自增。

num++分三步:读取、加一、赋值。

结论:

volatile只会对单个的的变量读写具有原子性,像num++这种复合操作volatile是无法保证其原子性的

解决方法:

用原子类AtomicInteger的incrementAndGet方法自增

public class MyThread26_1 extends Thread {
  //使用原子操作类
  public static AtomicInteger num = new AtomicInteger(0);
  //使用CountDownLatch来等待计算线程执行完
  static CountDownLatch countDownLatch = new CountDownLatch(30);

  @Override
  public void run() {
    for(int j=0;j<1000;j++){
      num.incrementAndGet();//原子性的num++,通过循环CAS方式
    }
    countDownLatch.countDown();
  }

  public static void main(String []args) throws InterruptedException {
    MyThread26_1[] mt = new MyThread26_1[30];
    //开启30个线程进行累加操作
    for(int i=0;i<mt.length;i++){
      mt[i] = new MyThread26_1();
    }
    for(int i=0;i<mt.length;i++){
      mt[i].start();
    }
    //等待计算线程执行完
    countDownLatch.await();
    System.out.println(num);
  }
}

输出结果如下

30000

原子类方法组合使用线程不安全

例子如下

ThreadDomain27类

public class ThreadDomain27 {
  public static AtomicInteger aiRef = new AtomicInteger();
  public void addNum()
  {
    System.out.println(Thread.currentThread().getName() + "加了100之后的结果:" + aiRef.addAndGet(100));
    aiRef.getAndAdd(1);
  }
}

MyThread27类

public class MyThread27 extends Thread{
  private ThreadDomain27 td;

  public MyThread27(ThreadDomain27 td)
  {
    this.td = td;
  }

  public void run()
  {
    td.addNum();
  }

  public static void main(String[] args)
  {
    try
    {
      ThreadDomain27 td = new ThreadDomain27();
      MyThread27[] mt = new MyThread27[5];
      for (int i = 0; i < mt.length; i++)
      {
        mt[i] = new MyThread27(td);
      }
      for (int i = 0; i < mt.length; i++)
      {
        mt[i].start();
      }
      Thread.sleep(1000);
      System.out.println(ThreadDomain27.aiRef.get());
    }
    catch (InterruptedException e)
    {
      e.printStackTrace();
    }
  }
}

输出结果如下

Thread-2加了100之后的结果:100
Thread-3加了100之后的结果:200
Thread-0加了100之后的结果:302
Thread-1加了100之后的结果:403
Thread-4加了100之后的结果:504
505

理想的输出结果是100,201,302...,因为addAndGet方法和getAndAdd方法构成的addNum不是原子操作。
解决该问题只需要在addNum加上synchronized关键字。

输出结果如下

Thread-1加了100之后的结果:100
Thread-0加了100之后的结果:201
Thread-2加了100之后的结果:302
Thread-3加了100之后的结果:403
Thread-4加了100之后的结果:504
505

结论:

volatile解决的是变量在多个线程之间的可见性,但是无法保证原子性。
synchronized不仅保障了原子性外,也保障了可见性。

volatile和synchronized比较

先看实例,使用volatile是什么效果

CountDownLatch保证10个线程都能执行完成,当然你也可以在System.out.println(test.inc);之前使用Thread.sleep(xxx)

public class MyThread28 {
  //使用CountDownLatch来等待计算线程执行完
  static CountDownLatch countDownLatch = new CountDownLatch(10);
  public volatile int inc = 0;
  public void increase() {
    inc++;
  }
  public static synchronized void main(String[] args) throws InterruptedException {
    final MyThread28 test = new MyThread28();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
          countDownLatch.countDown();
        }
      }.start();
    }
    countDownLatch.await();
    System.out.println(test.inc);
  }
}

运行结果如下

9677

每次运行结果都不一致。刚才我已经解释过,这里我再解释一遍。

使用volatile修饰int型变量i,多个线程同时进行i++操作。比如有两个线程A和B对volatile修饰的i进行i++操作,i的初始值是0,A线程执行i++时从本地内存刚读取了i的值0(i++不是原子操作),就切换到B线程了,B线程从本地内存中读取i的值也为0,然后就切换到A线程继续执行i++操作,完成后i就为1了,接着切换到B线程,因为之前已经读取过了,所以继续执行i++操作,最后的结果i就为1了。同理可以解释为什么每次运行结果都是小于10000的数字。

解决方法:

使用synchronized关键字

public class MyThread28 {
  //使用CountDownLatch来等待计算线程执行完
  static CountDownLatch countDownLatch = new CountDownLatch(10);
  public int inc = 0;
  public synchronized void increase() {
    inc++;
  }
  public static synchronized void main(String[] args) throws InterruptedException {
    final MyThread28 test = new MyThread28();
    for(int i=0;i<10;i++){
      new Thread(){
        public void run() {
          for(int j=0;j<1000;j++)
            test.increase();
          countDownLatch.countDown();
        }
      }.start();
    }
    countDownLatch.await();
    System.out.println(test.inc);
  }
}

输出结果如下

10000

synchronized不管是否是原子操作,它能保证同一时刻只有一个线程获取锁执行同步代码,会阻塞其他线程。

结论:

  • volatile只能用在变量,synchronized可以在变量、方法上使用。
  • volatile不会造成线程阻塞,synchronized会造成线程阻塞。
  • volatile效率比synchronized高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java多线程之volatile关键字及内存屏障实例解析

    前面一篇文章在介绍Java内存模型的三大特性(原子性.可见性.有序性)时,在可见性和有序性中都提到了volatile关键字,那这篇文章就来介绍volatile关键字的内存语义以及实现其特性的内存屏障. volatile是JVM提供的一种最轻量级的同步机制,因为Java内存模型为volatile定义特殊的访问规则,使其可以实现Java内存模型中的两大特性:可见性和有序性.正因为volatile关键字具有这两大特性,所以我们可以使用volatile关键字解决多线程中的某些同步问题. volatile

  • java中volatile不能保证线程安全(实例讲解)

    今天打了打代码研究了一下java的volatile关键字到底能不能保证线程安全,经过实践,volatile是不能保证线程安全的,它只是保证了数据的可见性,不会再缓存,每个线程都是从主存中读到的数据,而不是从缓存中读取的数据,附上代码如下,当synchronized去掉的时候,每个线程的结果是乱的,加上的时候结果才是正确的. /** * * 类简要描述 * * <p> * 类详细描述 * </p> * * @author think * */ public class Volatil

  • 详解Java线程编程中的volatile关键字的作用

    1.volatile关键字的两层语义 一旦一个共享变量(类的成员变量.类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作时的可见性,即一个线程修改了某个变量的值,这新值对其他线程来说是立即可见的. 2)禁止进行指令重排序. 先看一段代码,假如线程1先执行,线程2后执行: //线程1 boolean stop = false; while(!stop){ doSomething(); } //线程2 stop = true; 这段代码是很典型

  • java多线程编程之慎重使用volatile关键字

    volatile关键字相信了解Java多线程的读者都很清楚它的作用.volatile关键字用于声明简单类型变量,如int.float.boolean等数据类型.如果这些简单数据类型声明为volatile,对它们的操作就会变成原子级别的.但这有一定的限制.例如,下面的例子中的n就不是原子级别的: 复制代码 代码如下: package mythread; public class JoinThread extends Thread{public static volatile int n = 0;p

  • Java多线程并发编程 Volatile关键字

    volatile 关键字是一个神秘的关键字,也许在 J2EE 上的 JAVA 程序员会了解多一点,但在 Android 上的 JAVA 程序员大多不了解这个关键字.只要稍了解不当就好容易导致一些并发上的错误发生,例如好多人把 volatile 理解成变量的锁.(并不是) volatile 的特性: 具备可见性 保证不同线程对被 volatile 修饰的变量的可见性. 有一被 volatile 修饰的变量 i,在一个线程中修改了此变量 i,对于其他线程来说 i 的修改是立即可见的. 如: vola

  • Java线程之线程同步synchronized和volatile详解

    上篇通过一个简单的例子说明了线程安全与不安全,在例子中不安全的情况下输出的结果恰好是逐个递增的(其实是巧合,多运行几次,会产生不同的输出结果),为什么会产生这样的结果呢,因为建立的Count对象是线程共享的,一个线程改变了其成员变量num值,下一个线程正巧读到了修改后的num,所以会递增输出. 要说明线程同步问题首先要说明Java线程的两个特性,可见性和有序性.多个线程之间是不能直接传递数据交互的,它们之间的交互只能通过共享变量来实现.拿上篇博文中的例子来说明,在多个线程之间共享了Count类的

  • Java多线程 volatile关键字详解

    volatile volatile是一种轻量同步机制.请看例子 MyThread25类 public class MyThread25 extends Thread{ private boolean isRunning = true; public boolean isRunning() { return isRunning; } public void setRunning(boolean isRunning) { this.isRunning = isRunning; } public vo

  • Java中Volatile关键字详解及代码示例

    一.基本概念 先补充一下概念:Java内存模型中的可见性.原子性和有序性. 可见性: 可见性是一种复杂的属性,因为可见性中的错误总是会违背我们的直觉.通常,我们无法确保执行读操作的线程能适时地看到其他线程写入的值,有时甚至是根本不可能的事情.为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制. 可见性,是指线程之间的可见性,一个线程修改的状态对另一个线程是可见的.也就是一个线程修改的结果.另一个线程马上就能看到.比如:用volatile修饰的变量,就会具有可见性.volatile修饰的

  • Java 多线程synchronized关键字详解(六)

    synchronized 关键字,代表这个方法加锁,相当于不管哪一个线程(例如线程A),运行到这个方法时,都要检查有没有其它线程B(或者C. D等)正在用这个方法(或者该类的其他同步方法),有的话要等正在使用synchronized方法的线程B(或者C .D)运行完这个方法后再运行此线程A,没有的话,锁定调用者,然后直接运行.它包括两种用法:synchronized 方法和 synchronized 块. 多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多

  • Java 多线程优先级实例详解

    Java 多线程优先级实例详解 线程的优先级将该线程的重要性传递给调度器.尽管CPU处理现有线程集的顺序是不确定的,但是调度器将倾向于让优先权最高的线程先执行. 你可以用getPriority()来读取现有线程的优先级,并且在任何时刻都可以通过setPriority()来修改优先级. import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class SimplePrio

  • JAVA 多线程爬虫实例详解

    JAVA 多线程爬虫实例详解 前言 以前喜欢Python的爬虫是出于他的简洁,但到了后期需要更快,更大规模的爬虫的时候,我才渐渐意识到Java的强大.Java有一个很好的机制,就是多线程.而且Java的代码效率执行起来要比python快很多.这份博客主要用于记录我对多线程爬虫的实践理解. 线程 线程是指一个任务从头至尾的执行流.线程提供了运行一个任务的机制.对于Java而言,可以在一个程序中并发地启动多个线程.这些线程可以在多处理器系统上同时运行. runnable接口 任务类必须实现runna

  • java多线程中断代码详解

    一.java中终止线程主要有三种方法: ①线程正常退出,即run()方法执行完毕了 ②使用Thread类中的stop()(已过期不推荐使用)方法强行终止线程. ③使用中断机制 t.stop()调用时,终止线程,会导致该线程所持有的锁被强制释放,从而被其他线程所持有,因此有可能导致与预期结果不一致.下面使用中断信号量中断非阻塞状态的线程中: public class TestStopThread { public static void main(String[] args) throws Int

  • Java中final关键字详解及实例

    final在Java中可以声明成员变量.方法.类以及本地变量.一旦你将引用声明作final,你将不能改变这个引用了,如果你试图将变量再次初始化的话,编译器会报编译错误.  final的含义在不同的场景下有细微的差别,但总体来说,它指的是"不可变". 1. final变量 凡是对成员变量或者本地变量(在方法中的或者代码块中的变量称为本地变量)声明为final的都叫作final变量.final变量经常和static关键字一起使用,作为常量.用final关键字修饰的变量,只能进行一次赋值操作

  • Java多线程ForkJoinPool实例详解

    引言 java 7提供了另外一个很有用的线程池框架,Fork/Join框架 理论 Fork/Join框架主要有以下两个类组成. * ForkJoinPool 这个类实现了ExecutorService接口和工作窃取算法(Work-Stealing Algorithm).它管理工作者线程,并提供任务的状态信息,以及任务的执行信息 * ForkJoinTask 这个类是一个将在ForkJoinPool执行的任务的基类. Fork/Join框架提供了在一个任务里执行fork()和join()操作的机制

  • Java中final关键字详解

    谈到final关键字,想必很多人都不陌生,在使用匿名内部类的时候可能会经常用到final关键字.另外,Java中的String类就是一个final类,那么今天我们就来了解final这个关键字的用法. 主要介绍:一.final关键字的基本用法.二.深入理解final关键字 一.final关键字的基本用法 在Java中,final关键字可以用来修饰类.方法和变量(包括成员变量和局部变量).下面就从这三个方面来了解一下final关键字的基本用法. 1.修饰类 当用final修饰一个类时,表明这个类不能

  • java多线程编程技术详解和实例代码

     java多线程编程技术详解和实例代码 1.   Java和他的API都可以使用并发. 可以指定程序包含不同的执行线程,每个线程都具有自己的方法调用堆栈和程序计数器,使得线程在与其他线程并发地执行能够共享程序范围内的资源,比如共享内存,这种能力被称为多线程编程(multithreading),在核心的C和C++语言中并不具备这种能力,尽管他们影响了JAVA的设计. 2.   线程的生命周期 新线程的生命周期从"新生"状态开始.程序启动线程前,线程一直是"新生"状态:

随机推荐