Python队列、进程间通信、线程案例

进程互斥锁

多进程同时抢购余票

# 并发运行,效率高,但竞争写同一文件,数据写入错乱
# data.json文件内容为 {"ticket_num": 1}
import json
import time
from multiprocessing import Process
def search(user):
  with open('data.json', 'r', encoding='utf-8') as f:
    dic = json.load(f)
  print(f'用户{user}查看余票,还剩{dic.get("ticket_num")}...')
def buy(user):
  with open('data.json', 'r', encoding='utf-8') as f:
    dic = json.load(f)

  time.sleep(0.1)
  if dic['ticket_num'] > 0:
    dic['ticket_num'] -= 1
    with open('data.json', 'w', encoding='utf-8') as f:
      json.dump(dic, f)
    print(f'用户{user}抢票成功!')

  else:
    print(f'用户{user}抢票失败')
def run(user):
  search(user)
  buy(user)
if __name__ == '__main__':
  for i in range(10): # 模拟10个用户抢票
    p = Process(target=run, args=(f'用户{i}', ))
    p.start()

使用锁来保证数据安全

# data.json文件内容为 {"ticket_num": 1}
import json
import time
from multiprocessing import Process, Lock
def search(user):
  with open('data.json', 'r', encoding='utf-8') as f:
    dic = json.load(f)
  print(f'用户{user}查看余票,还剩{dic.get("ticket_num")}...')
def buy(user):
  with open('data.json', 'r', encoding='utf-8') as f:
    dic = json.load(f)

  time.sleep(0.2)
  if dic['ticket_num'] > 0:
    dic['ticket_num'] -= 1
    with open('data.json', 'w', encoding='utf-8') as f:
      json.dump(dic, f)
    print(f'用户{user}抢票成功!')

  else:
    print(f'用户{user}抢票失败')
def run(user, mutex):
  search(user)
  mutex.acquire() # 加锁
  buy(user)
  mutex.release() # 释放锁
if __name__ == '__main__':
  # 调用Lock()类得到一个锁对象
  mutex = Lock()

  for i in range(10): # 模拟10个用户抢票
    p = Process(target=run, args=(f'用户{i}', mutex))
    p.start()

进程互斥锁:

让并发变成串行,牺牲了执行效率,保证了数据安全

在程序并发时,需要修改数据使用

队列

队列遵循的是先进先出

队列:相当于内存中一个队列空间,可以存放多个数据,但数据的顺序是由先进去的排在前面。

q.put() 添加数据

q.get() 取数据,遵循队列先进先出

q.get_nowait() 获取队列数据, 队列中没有就会报错

q.put_nowait 添加数据,若队列满了也会报错

q.full() 查看队列是否满了

q.empty() 查看队列是否为空

from multiprocessing import Queue

# 调用队列类,实例化队列对象
q = Queue(5)  # 队列中存放5个数据

# put添加数据,若队列里的数据满了就会卡住
q.put(1)
print('进入数据1')
q.put(2)
print('进入数据2')
q.put(3)
print('进入数据3')
q.put(4)
print('进入数据4')
q.put(5)
print('进入数据5')

# 查看队列是否满了
print(q.full())

# 添加数据, 若队列满了也会报错
q.put_nowait(6)

# q.get() 获取的数据遵循先进先出
print(q.get())
print(q.get())
print(q.get())
print(q.get())
print(q.get())
# print(q.get())
print(q.get_nowait())  # 获取队列数据, 队列中没有就会报错

# 判断队列是否为空
print(q.empty())
q.put(6)
print('进入数据6')

进程间通信

IPC(Inter-Process Communication)

进程间数据是相互隔离的,若想实现进程间通信,可以利用队列

from multiprocessing import Process, Queue
def task1(q):
  data = 'hello 你好'
  q.put(data)
  print('进程1添加数据到队列')
def task2(q):
  print(q.get())
  print('进程2从队列中获取数据')
if __name__ == '__main__':
  q = Queue()

  p1 = Process(target=task1, args=(q, ))
  p2 = Process(target=task2, args=(q, ))
  p1.start()
  p2.start()
  print('主进程')

生产者与消费者

在程序中,通过队列生产者把数据添加到队列中,消费者从队列中获取数据

from multiprocessing import Process, Queue
import time

# 生产者
def producer(name, food, q):
  for i in range(10):
    data = food, i
    msg = f'用户{name}开始制作{data}'
    print(msg)
    q.put(data)
    time.sleep(0.1)
# 消费者
def consumer(name, q):
  while True:
    data = q.get()
    if not data:
      break

    print(f'用户{name}开始吃{data}')
if __name__ == '__main__':
  q = Queue()
  p1 = Process(target=producer, args=('neo', '煎饼', q))
  p2 = Process(target=producer, args=('wick', '肉包', q))

  c1 = Process(target=consumer, args=('cwz', q))
  c2 = Process(target=consumer, args=('woods', q))

  p1.start()
  p2.start()

  c1.daemon = True
  c2.daemon = True
  c1.start()
  c2.start()
  print('主')

线程

线程的概念

进程与线程都是虚拟单位

进程:资源单位

线程:执行单位

开启一个进程,一定会有一个线程,线程才是真正执行者

开启进程:

  • 开辟一个名称空间,每开启一个进程都会占用一份内存资源
  • 会自带一个线程

开启线程:

  • 一个进程可以开启多个线程
  • 线程的开销远小于进程

注意:线程不能实现并行,线程只能实现并发,进程可以实现并行

线程的两种创建方式

from threading import Thread
import time
# 创建线程方式1
def task():
  print('线程开启')
  time.sleep(1)
  print('线程结束')

if __name__ == '__main__':
  t = Thread(target=task)
  t.start()
# 创建线程方式2
class MyThread(Thread):
  def run(self):
    print('线程开启...')
    time.sleep(1)
    print('线程结束...')
if __name__ == '__main__':
  t = MyThread()
  t.start()

线程对象的方法

from threading import Thread
from threading import current_thread
import time

def task():
  print(f'线程开启{current_thread().name}')
  time.sleep(1)
  print(f'线程结束{current_thread().name}')
if __name__ == '__main__':
  t = Thread(target=task)
  print(t.isAlive())
  # t.daemon = True
  t.start()
  print(t.isAlive())

线程互斥锁

线程之间数据是共享的

from threading import Thread
from threading import Lock
import time

mutex = Lock()
n = 100

def task(i):
  print(f'线程{i}启动')
  global n
  mutex.acquire()
  temp = n
  time.sleep(0.1)
  n = temp - 1
  print(n)
  mutex.release()

if __name__ == '__main__':
  t_l = []
  for i in range(100):
    t = Thread(target=task, args=(i, ))
    t_l.append(t)
    t.start()

  for t in t_l:
    t.join()

  print(n)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python多线程模块Threading用法示例小结

    本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念:    进程 是操

  • Python全局锁中如何合理运用多线程(多进程)

    Python全局锁 (1)全局锁导致的问题 全局锁的英文简称是GIL,全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全所做的决定,每个线程在执行时候都需要先获取GIL,保证同一时刻只有一个线程可以执行代码,即同一时刻只有一个线程使用CPU,也就是说多线程并不是真正意义上的同时执行. 每个CPU在同一时间只能执行一个线程(在单核CPU下的多线程其实都只是并发,不是并行,并发和并行从宏观上来讲都是同时处理多路请求的概念.但并发和并行

  • python多线程高级锁condition简单用法示例

    本文实例讲述了python多线程高级锁condition简单用法.分享给大家供大家参考,具体如下: 多线程编程中如果使用Condition对象代替lock, 能够实现在某个事件触发后才处理数据, condition中含有的方法: - wait:线程挂起,收到notify通知后继续运行 - notify:通知其他线程, 解除其它线程的wai状态 - notifyAll(): 通知所有线程 - acquire和release: 获得锁和解除锁, 与lock类似, - enter和exit使得对象支持

  • Python 线程池用法简单示例

    本文实例讲述了Python 线程池用法.分享给大家供大家参考,具体如下: # -*- coding:utf-8 -*- #! python3 ''' Created on 2019-10-2 @author: Administrator ''' from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor import os,time,random def task(n): print('%s is runing' %

  • python多线程并发及测试框架案例

    这篇文章主要介绍了python多线程并发及测试框架案例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.循环创建多个线程,并通过循环启动执行 import threading from datetime import * from time import sleep # 单线程执行 def test(): print('hello world') t = threading.Thread(target=test) t.start() # 多线

  • Python线程指南分享

    本文介绍了Python对于线程的支持,包括"学会"多线程编程需要掌握的基础以及Python两个线程标准库的完整介绍及使用示例. 注意:本文基于Python2.4完成,:如果看到不明白的词汇请记得百度谷歌或维基,whatever. 1. 线程基础 1.1. 线程状态 线程有5种状态,状态转换的过程如下图所示: thread_stat_simple 1.2. 线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样).但是当线程需要共享数据时,可能存在数据不同步的问题.考虑

  • 使用Python中的线程进行网络编程的入门教程

    引言 对于 Python 来说,并不缺少并发选项,其标准库中包括了对线程.进程和异步 I/O 的支持.在许多情况下,通过创建诸如异步.线程和子进程之类的高层模块,Python 简化了各种并发方法的使用.除了标准库之外,还有一些第三方的解决方案,例如 Twisted.Stackless 和进程模块.本文重点关注于使用 Python 的线程,并使用了一些实际的示例进行说明.虽然有许多很好的联机资源详细说明了线程 API,但本文尝试提供一些实际的示例,以说明一些常见的线程使用模式. 全局解释器锁 (G

  • 用python实现的线程池实例代码

    python3标准库里自带线程池ThreadPoolExecutor和进程池ProcessPoolExecutor. 如果你用的是python2,那可以下载一个模块,叫threadpool,这是线程池.对于进程池可以使用python自带的multiprocessing.Pool. 当然也可以自己写一个threadpool. # coding:utf-8 import Queue import threading import sys import time import math class W

  • python队列Queue的详解

    Queue Queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递 基本FIFO队列 class Queue.Queue(maxsize=0) FIFO即First in First Out,先进先出.Queue提供了一个基本的FIFO容器,使用方法很简单,maxsize是个整数,指明了队列中能存放的数据个数的上限.一旦达到上限,插入会导致阻塞,直到队列中的数据被消费掉.如果maxsize小

  • 详解python中的线程与线程池

    线程 进程和线程 什么是进程? 进程就是正在运行的程序, 一个任务就是一个进程, 进程的主要工作是管理资源, 而不是实现功能 什么是线程? 线程的主要工作是去实现功能, 比如执行计算. 线程和进程的关系就像员工与老板的关系, 老板(进程) 提供资源 和 工作空间, 员工(线程) 负责去完成相应的任务 特点 一个进程至少由一个线程, 这一个必须存在的线程被称为主线程, 同时一个进程也可以有多个线程, 即多线程 当我们我们遇到一些需要重复执行的代码时, 就可以使用多线程分担一些任务, 进而加快运行速

  • Python队列RabbitMQ 使用方法实例记录

    本文实例讲述了Python队列RabbitMQ 使用方法.分享给大家供大家参考,具体如下: 目前的exchange的路由策略是:每个需要队列的服务独享一个队列(queue),消费者(consumer)采用ACK自动应答模式处理队列消息. 如果需要新增一个队列服务,需要做如下开发步骤: 1.创建队列,发送消息 <?php $routingkey = 'key'; //设置你的连接 $conn_args = array('host' => 'localhost', 'port' => '56

  • python队列queue模块详解

    队列queue 多应用在多线程应用中,多线程访问共享变量.对于多线程而言,访问共享变量时,队列queue是线程安全的.从queue队列的具体实现中,可以看出queue使用了1个线程互斥锁(pthread.Lock()),以及3个条件标量(pthread.condition()),来保证了线程安全. queue队列的互斥锁和条件变量,可以参考另一篇文章:python线程中同步锁 queue的用法如下: import Queque a=[1,2,3] device_que=Queque.queue(

  • python 多线程中子线程和主线程相互通信方法

    需求:主线程开启了多个线程去干活,每个线程需要完成的时间不同,但是在干完活以后都要通知给主线程 下面上代码: #!/usr/bin/python # coding:utf8 ''' 多线程和queue配合使用,实现子线程和主线程相互通信的例子 ''' import threading __author__ = "Kenny.Li" import Queue import time import random q = Queue.Queue() class MyThread(thread

  • Python如何实现线程间通信

    问题 你的程序中有多个线程,你需要在这些线程之间安全地交换信息或数据 解决方案 从一个线程向另一个线程发送数据最安全的方式可能就是使用 queue 库中的队列了.创建一个被多个线程共享的 Queue 对象,这些线程通过使用 put() 和 get() 操作来向队列中添加或者删除元素. 例如: from queue import Queue from threading import Thread # A thread that produces data def producer(out_q):

  • Python并发编程线程消息通信机制详解

    目录 1 Event事件 2 Condition 3 Queue队列 4 总结一下 前面我已经向大家介绍了,如何使用创建线程,启动线程.相信大家都会有这样一个想法,线程无非就是创建一下,然后再start()下,实在是太简单了. 可是要知道,在真实的项目中,实际场景可要我们举的例子要复杂的多得多,不同线程的执行可能是有顺序的,或者说他们的执行是有条件的,是要受控制的.如果仅仅依靠前面学的那点浅薄的知识,是远远不够的. 那今天,我们就来探讨一下如何控制线程的触发执行. 要实现对多个线程进行控制,其实

  • python中进程间通信详细介绍

    目录 进程间通信(IPC) 管道通信(Pipe) 1.通信原理 2. 实现方法 共享内存 1.通信原理 2.实现方法 信号量(信号灯集) 1.通信原理 2. 实现方法 3.代码演示 进程间通信(IPC) 必要性 进程间空间独立,资源不共享,此时在需要进程间数据传输时就需要特定的手段进行数据通信 常用进程间通信方法 管道 消息队列 共享内存 型号 信号量 套接字 管道通信(Pipe) 1.通信原理 在内存中开辟管道空间,生成管道操作对象,多个进程使用同一个管道对象进行读写即可实现通信 代码演示(w

随机推荐