Pandas之groupby( )用法笔记小结

groupby官方解释

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

讲真的,非常不能理解pandas官方文档的这种表达形式,让人真的有点摸不着头脑,example给得又少,参数也不给得很清楚,不过没有办法,还是只能选择原谅他。

groupby我用过的用法

基本用法我这里就不呈现了,我觉得用过一次的人基本不会忘记,这里我主要写一下我用过的关系groupby函数的疑惑:

apply & agg

这个问题着实困扰了我很久,经过研究,找了一些可能帮助理解的东西。先举一个例子:

import pandas as pd
df = pd.DataFrame({'Q':['LI','ZHANG','ZHANG','LI','WANG'], 'A' : [1,1,1,2,2], 'B' : [1,-1,0,1,2], 'C' : [3,4,5,6,7]})
  A B C Q
0 1 1 3 LI
1 1 -1 4 ZHANG
2 1 0 5 ZHANG
3 2 1 6 LI
4 2 2 7 WANG
df.groupby('Q').apply(lambda x:print(x))

A  B  C   Q
    0  1  1  3  LI
    3  2  1  6  LI
       A  B  C   Q
    0  1  1  3  LI
    3  2  1  6  LI
       A  B  C     Q
    4  2  2  7  WANG
       A  B  C      Q
    1  1 -1  4  ZHANG
    2  1  0  5  ZHANG

df.groupby('Q').agg(lambda x:print(x))

0    1
    3    2
    Name: A, dtype: int64
    4    2
    Name: A, dtype: int64
    1    1
    2    1
    Name: A, dtype: int64
    0    1
    3    1
    Name: B, dtype: int64
    4    2
    Name: B, dtype: int64
    1   -1
    2    0
    Name: B, dtype: int64
    0    3
    3    6
    Name: C, dtype: int64
    4    7
    Name: C, dtype: int64
    1    4
    2    5
    Name: C, dtype: int64

  A B C
Q      
LI None None None
WANG None None None
ZHANG None None None

从这个例子可以看出,使用apply()处理的对象是一个个的类如DataFrame的数据表,然而agg()则每次只传入一列。

不过我觉得这一点区别在实际应用中分别并不大,因为Ipython的Out输出对于这两个函数几乎没有差别,不管是处理一列还是一表。

我觉得agg()有一点让我很开心就是他可以同时传入多个函数,简直不要太方便哈哈:

df.groupby('Q').agg(['mean','std','count','max'])
  A B C
  mean std count max mean std count max mean std count max
Q                        
LI 1.5 0.707107 2 2 1.0 0.000000 2 1 4.5 2.121320 2 6
WANG 2.0 NaN 1 2 2.0 NaN 1 2 7.0 NaN 1 7
ZHANG 1.0 0.000000 2 1 -0.5 0.707107 2 0 4.5 0.707107 2 5

Plotting

这个也是我刚刚学会的,groupby的plot简直不要太方便了:(不过这个例子选的不是很好)

%matplotlib inline
df.groupby('Q').agg(['mean','std','count','max']).plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x1133bd710>

MultiIndex

这个是困扰我最多的一个问题,因为如果我groupby的时候选择了两个level,之后的data总是呈现透视表的形式,如:

Muldf = df.groupby(['Q','A']).agg('mean')
print(Muldf)

B    C
    Q     A         
    LI    1  1.0  3.0
          2  1.0  6.0
    WANG  2  2.0  7.0
    ZHANG 1 -0.5  4.5

我开始甚至以为这应该不是dataframe,是一个我可能没注意过的一个东西,可是后来我发现,这不过是MultiIndex形式的一种dataframe罢了。

Muldf.B

Q      A
    LI     1    1.0
           2    1.0
    WANG   2    2.0
    ZHANG  1   -0.5
    Name: B, dtype: float64

如果要选择某一个index,用`xs()`函数:

Muldf.xs('LI')
  B C
A    
1 1.0 3.0
2 1.0 6.0

PS:有个问题困扰好久了,怎么把multiindex对象变回原来的形式呢。如:

Multiindex格式如下:(a, b, c, ...),

index column
(a1,b1,c1) d1
(a2,b2,c2) d2

直接调用函数reset_index(),Multiindex中(a, b, c, ...)就变成columns了,index重置为(0,1,2,...), 如下:

index       column
0 a1 b1 c1 d1
1 a2 b2 c2 d2

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Pandas GroupBy对象 索引与迭代方法

    如下所示: import pandas as pd df = pd.DataFrame({'性别' : ['男', '女', '男', '女', '男', '女', '男', '男'], '成绩' : ['优秀', '优秀', '及格', '差', '及格', '及格', '优秀', '差'], '年龄' : [15,14,15,12,13,14,15,16]}) GroupBy=df.groupby("性别") GroupBy.iter() GroupBy对象是一个迭代对象,每次迭代

  • pandas数据预处理之dataframe的groupby操作方法

    在数据预处理过程中可能会遇到这样的问题,如下图:数据中某一个key有多组数据,如何分别对每个key进行相同的运算? dataframe里面给出了一个group by的一个操作,对于"group by"操作,我们通常是指以下一个或多个操作步骤: l (Splitting)按照一些规则将数据分为不同的组: l (Applying)对于每组数据分别执行一个函数: l (Combining)将结果组合到一个数据结构中: 使用dataframe实现groupby的用法: # -*- coding

  • 利用Pandas和Numpy按时间戳将数据以Groupby方式分组

    首先说一下需求,我需要将数据以分钟为单位进行分组,然后每一分钟内的数据作为一行输出,因为不同时间的数据量不一样,所以所有数据按照最长的那组数据为准,不足的数据以各自的最后一个数据进行补足. 之后要介绍一下我的数据源,之前没用的数据列已经去除,我只留下要用到的数据data列和时间戳time列,时间戳是以秒计的,可以看到一共是407454行. data time 0 6522.50 1.530668e+09 1 6522.66 1.530668e+09 2 6523.79 1.530668e+09

  • pandas获取groupby分组里最大值所在的行方法

    pandas获取groupby分组里最大值所在的行方法 如下面这个DataFrame,按照Mt分组,取出Count最大的那行 import pandas as pd df = pd.DataFrame({'Sp':['a','b','c','d','e','f'], 'Mt':['s1', 's1', 's2','s2','s2','s3'], 'Value':[1,2,3,4,5,6], 'Count':[3,2,5,10,10,6]}) df Count Mt Sp Value 0 3 s1

  • pandas groupby 分组取每组的前几行记录方法

    直接上例子. import pandas as pd df = pd.DataFrame({'class':['a','a','b','b','a','a','b','c','c'],'score':[3,5,6,7,8,9,10,11,14]}) df: class score 0 a 3 1 a 5 2 b 6 3 b 7 4 a 8 5 a 9 6 b 10 7 c 11 8 c 14 df.sort_values(['class','score'],ascending=[1,0],inp

  • 浅谈pandas用groupby后对层级索引levels的处理方法

    层及索引levels,刚开始学习pandas的时候没有太多的操作关于groupby,仅仅是简单的count.sum.size等等,没有更深入的利用groupby后的数据进行处理.近来数据处理的时候有遇到这类问题花了一点时间,所以这里记录以及复习一下:(以下皆是个人实践后的理解) 我使用一个实例来讲解下面的问题:一张数据表中有三列(动物物种.物种品种.品种价格),选出每个物种从大到小品种的前两种,最后只需要品种和价格这两列. 以上这张表是我们后面需要处理的数据表 (物种 品种 价格) levels

  • Pandas之groupby( )用法笔记小结

    groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs) Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of

  • Pandas中GroupBy具体用法详解

    目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用多个聚合方法 NamedAgg 不同的列指定不同的聚合方法 转换操作 过滤操作 Apply操作 简介 pandas中的DF数据类型可以像数据库表格一样进行groupby操作.通常来说groupby操作可以分为三部分:分割数据,应用变换和和合并数据. 本文将会详细讲解Pandas中的groupby操作. 分割数据 分割数据的目的是将DF分割成为

  • Pandas中的 transform()结合 groupby()用法示例详解

    首先,假设我们有如下餐厅数据集: import pandas as pd df = pd.DataFrame({ 'restaurant_id': [101,102,103,104,105,106,107], 'address': ['A','B','C','D', 'E', 'F', 'G'], 'city': ['London','London','London','Oxford','Oxford', 'Durham', 'Durham'], 'sales': [10,500,48,12,2

  • pandas groupby 用法实例详解

    目录 1.分组groupby 2.groupby的数据结构 4.transform的用法 项目github地址:bitcarmanlee easy-algorithm-interview-and-practice欢迎大家star,留言,一起学习进步 1.分组groupby 在日常数据分析过程中,经常有分组的需求.具体来说,就是根据一个或者多个字段,将数据划分为不同的组,然后进行进一步分析,比如求分组的数量,分组内的最大值最小值平均值等.在sql中,就是大名鼎鼎的groupby操作.pandas中

  • Python数据分析中Groupby用法之通过字典或Series进行分组的实例

    在数据分析中有时候需要自己定义分组规则 这里简单介绍一下用一个字典实现分组 people=DataFrame( np.random.randn(5,5), columns=['a','b','c','d','e'], index=['Joe','Steve','Wes','Jim','Travis'] ) mapping={'a':'red','b':'red','c':'blue','d':'blue','e':'red','f':'orange'} by_column=people.grou

  • Pandas中DataFrame基本函数整理(小结)

    构造函数 DataFrame([data, index, columns, dtype, copy]) #构造数据框 属性和数据 DataFrame.axes #index: 行标签:columns: 列标签 DataFrame.as_matrix([columns]) #转换为矩阵 DataFrame.dtypes #返回数据的类型 DataFrame.ftypes #返回每一列的 数据类型float64:dense DataFrame.get_dtype_counts() #返回数据框数据类

  • MyBatis持久层框架的用法知识小结

    MyBatis 是支持普通 SQL查询,存储过程和高级映射的优秀持久层框架.MyBatis 消除了几乎所有的JDBC代码和参数的手工设置以及结果集的检索.MyBatis 使用简单的 XML或注解用于配置和原始映射,将接口和 Java 的POJOs(Plain Old Java Objects,普通的 Java对象)映射成数据库中的记录. MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google c

  • JavaScript lodash常见用法系列小结

    lodash一开始是Underscore.js库的一个fork,因为和其他(Underscore.js的)贡献者意见相左.John-David Dalton的最初目标,是提供更多"一致的跨浏览器行为--,并改善性能".之后,该项目在现有成功的基础之上取得了更大的成果,并于一月份发布了3.0版本. 下面给大家说下javascript lodash知识,具体详情如下所示: 1 _.compact用法 _.compact([0, 1, false, 2, '', 3,'mm']); var

  • C# 中的GroupBy的动态拼接问题及GroupBy<>用法介绍

    废话不多说了,直接给大家贴代码了,具体代码如下所示: public class Person { public string FirstName{set;get;} public string LastName{set;get;} public Person(){} public Person(string firstName, string lastName) { FirstName = firstName; LastName = lastName; } } List<Person> per

随机推荐