python threading模块操作多线程介绍

python是支持多线程的,并且是native的线程。主要是通过thread和threading这两个模块来实现的。thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用。这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧。

threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class。一般来说,使用线程有两种模式,一种是创建线程要执行的函数,把这个函数传递进Thread对象里,让它来执行;另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里。我们来看看这两种做法吧。

#-*- encoding: gb2312 -*-
import string, threading, time

def thread_main(a):
  global count, mutex
  # 获得线程名
  threadname = threading.currentThread().getName()

  for x in xrange(0, int(a)):
    # 取得锁
    mutex.acquire()
    count = count + 1
    # 释放锁
    mutex.release()
    print threadname, x, count
    time.sleep(1)

def main(num):
  global count, mutex
  threads = []

  count = 1
  # 创建一个锁
  mutex = threading.Lock()
  # 先创建线程对象
  for x in xrange(0, num):
    threads.append(threading.Thread(target=thread_main, args=(10,)))
  # 启动所有线程
  for t in threads:
    t.start()
  # 主线程中等待所有子线程退出
  for t in threads:
    t.join() 

if __name__ == '__main__':
  num = 4
  # 创建4个线程
  main(4)

上面的就是第一种做法,这种做法是很常见的,下面是另一种,曾经使用过Java的朋友应该很熟悉这种模式:

#-*- encoding: gb2312 -*-
import threading
import time

class Test(threading.Thread):
  def __init__(self, num):
    threading.Thread.__init__(self)
    self._run_num = num

  def run(self):
    global count, mutex
    threadname = threading.currentThread().getName()

    for x in xrange(0, int(self._run_num)):
      mutex.acquire()
      count = count + 1
      mutex.release()
      print threadname, x, count
      time.sleep(1)

if __name__ == '__main__':
  global count, mutex
  threads = []
  num = 4
  count = 1
  # 创建锁
  mutex = threading.Lock()
  # 创建线程对象
  for x in xrange(0, num):
    threads.append(Test(10))
  # 启动线程
  for t in threads:
    t.start()
  # 等待子线程结束
  for t in threads:
    t.join()
(0)

相关推荐

  • python基于queue和threading实现多线程下载实例

    本文实例讲述了python基于queue和threading实现多线程下载的方法,分享给大家供大家参考.具体方法如下: 主代码如下: #download worker queue_download = Queue.Queue(0) DOWNLOAD_WORKERS = 20 for i in range(DOWNLOAD_WORKERS): DownloadWorker(queue_download).start() #start a download worker for md5 in MD5

  • Python用threading实现多线程详解

    多线程 多线程是个提高程序运行效率的好办法,本来要顺序执行的程序现在可以并行执行,可想而知效率要提高很多.但是多线程也不是能提高所有程序的效率.程序的两个极端是'CPU 密集型'和'I/O 密集型'两种,多线程技术比较适用于后者,因为在串行结构中当你去读写磁盘或者网络通信的时候 CPU 是闲着的,毕竟网络比磁盘要慢几个数量级,磁盘比内存慢几个数量级,内存又比 CPU 慢几个数量级.多线程技术就可以同时执行,比如你的程序需要发送 N 个 http 数据包(10 秒),还需要将文件从一个位置复制到另

  • Python threading多线程编程实例

    Python 的多线程有两种实现方法: 函数,线程类 1.函数 调用 thread 模块中的 start_new_thread() 函数来创建线程,以线程函数的形式告诉线程该做什么 复制代码 代码如下: # -*- coding: utf-8 -*- import thread def f(name):   #定义线程函数   print "this is " + name   if __name__ == '__main__':   thread.start_new_thread(f

  • Python多线程编程(三):threading.Thread类的重要函数和方法

    这篇文章主要介绍threading模块中的主类Thread的一些主要方法,实例代码如下: 复制代码 代码如下: '''  Created on 2012-9-7    @author:  walfred @module: thread.ThreadTest3  @description: '''    import threading    class MyThread(threading.Thread):      def __init__(self):          threading.

  • Python 多线程Threading初学教程

    1.1 什么是多线程 Threading 多线程可简单理解为同时执行多个任务. 多进程和多线程都可以执行多个任务,线程是进程的一部分.线程的特点是线程之间可以共享内存和变量,资源消耗少(不过在Unix环境中,多进程和多线程资源调度消耗差距不明显,Unix调度较快),缺点是线程之间的同步和加锁比较麻烦. 1.2 添加线程 Thread 导入模块 import threading 获取已激活的线程数 threading.active_count() 查看所有线程信息 threading.enumer

  • Python中多线程thread与threading的实现方法

    学过Python的人应该都知道,Python是支持多线程的,并且是native的线程.本文主要是通过thread和threading这两个模块来实现多线程的. python的thread模块是比较底层的模块,python的threading模块是对thread做了一些包装的,可以更加方便的被使用. 这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧. threading模块里面主要是对一些线程的操作对象化了,创建

  • Python多线程编程(一):threading模块综述

    Python这门解释性语言也有专门的线程模型,Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,但暂时无法利用多处理器的优势.在Python中我们主要是通过thread和 threading这两个模块来实现的,其中Python的threading模块是对thread做了一些包装的,可以更加方便的被使用,所以我们使用 threading模块实现多线程编程.这篇文章我们主要来看看Python对多线程编程的支持. 在语言层面,Pyt

  • python多线程threading.Lock锁用法实例

    本文实例讲述了python多线程threading.Lock锁的用法实例,分享给大家供大家参考.具体分析如下: python的锁可以独立提取出来 复制代码 代码如下: mutex = threading.Lock() #锁的使用 #创建锁 mutex = threading.Lock() #锁定 mutex.acquire([timeout]) #释放 mutex.release() 锁定方法acquire可以有一个超时时间的可选参数timeout.如果设定了timeout,则在超时后通过返回值

  • python threading模块操作多线程介绍

    python是支持多线程的,并且是native的线程.主要是通过thread和threading这两个模块来实现的.thread是比较底层的模块,threading是对thread做了一些包装的,可以更加方便的被使用.这里需要提一下的是python对线程的支持还不够完善,不能利用多CPU,但是下个版本的python中已经考虑改进这点,让我们拭目以待吧. threading模块里面主要是对一些线程的操作对象化了,创建了叫Thread的class.一般来说,使用线程有两种模式,一种是创建线程要执行的

  • 使用Python paramiko模块利用多线程实现ssh并发执行操作

    1.paramiko概述 ssh是一个协议,OpenSSH是其中一个开源实现,paramiko是Python的一个库,实现了SSHv2协议(底层使用cryptography). 有了Paramiko以后,我们就可以在Python代码中直接使用SSH协议对远程服务器执行操作,而不是通过ssh命令对远程服务器进行操作. 由于paramiko属于第三方库,所以需要使用如下命令先行安装 2.安装paramiko pip install paramiko 3.常用方法 connect():实现远程服务器的

  • Python threading模块中lock与Rlock的使用详细讲解

    目录 前言 1.Lock(互斥锁) 2.RLock(可重入锁) 前言 在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock .Rlock .Semaphore .Event .Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题. Lock & RLock:互斥锁,用来保证多线程访问共享变量的问题 Semaphore对象:Lock

  • python threading模块的使用指南

    1. threding模块创建线程对象 接上述案例,我们可以利用程序阻塞的时间让程序执行后面的任务,可以用多线程的方式去实现.对应的需要我们借助threading模块去实现: 如下所示 import time import threading def work(): """只有函数对象才能佈田名线积""" print('5.洗茶杯: 1min ' ) time.sleep(1) print('6.放茶叶: 1min ' ) time.sleep(

  • python os模块使用方法介绍

    os(operating system)模块是python中操作文件系统的模块,它是Python程序与操作系统进行交互的接口 os模块常用方法 1.os.chdir(path)修改当前工作目录(一般不会进行更改) 用处:可以跨目录写文件和调用模块,可以切换当前目录进行访问其下目录的文件内容 import os print(os.getcwd()) os.chdir("E:\python") print(os.getcwd()) E:\python练习 E:\python 2.os.cu

  • 基于Python os模块常用命令介绍

    1.os.name---判断现在正在实用的平台,Windows返回'nt':linux返回'posix' 2.os.getcwd()---得到当前工作的目录. 3.os.listdir()--- 4.os.remove---删除指定文件 5.os.rmdir()---删除指定目录 6.os.mkdir()---创建目录(只能创建一层) 7.os.path.isfile()---判断指定对象是否为文件.是则返回True. 8.os.path.isdir()---判断指定对象是否为目录 9.os.p

  • Python+threading模块对单个接口进行并发测试

    本文实例为大家分享了Python threading模块对单个接口进行并发测试的具体代码,供大家参考,具体内容如下 本文知识点 通过在threading.Thread继承类中重写run()方法实现定制输出结果 代码如下 import requests import threading import sys, io # 解决console显示乱码的编码问题 sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') clas

  • python sys模块使用方法介绍

    Python中的sys模块主要用于程序与解释器的交互,提供一系列函数和变量来处理Python运行环境 1.sys.api_version -----获取当前python内部版本号 import sys print(sys.api_version) 1013 2.sys.version -----获取版本信息 import sys print(sys.version) 3.9.1 (tags/v3.9.1:1e5d33e, Dec  7 2020, 17:08:21) [MSC v.1927 64

  • python math模块使用方法介绍

    math常用方法 1.math.ceil()向上取整 import math print(math.ceil(56.1)) 57 2.math.floor()向下取整 import math print(math.floor(56.1)) 56 3.math.fabs()取绝对值 import math print(math.fabs(56)) print(math.fabs(-56)) 56.056.0 4.math.fmod()求模运算 import math print(math.fmod

  • Python bsddb模块操作Berkeley DB数据库介绍

    bsddb模块是用来操作bdb的模块,bdb是著名的Berkeley DB,它的性能非常好,mysql的存储后端引擎都支持bdb的方式.这里简单介绍一些关于bsddb的使用方法. bdb不同于一般的关系数据库,它存储的数据只能是以key和value组成的一对数据,使用就像python的字典一样,它不能直接表示多个字段,当要存储多个字段的数据时,只能把数据作为一个整体存放到value中. 使用bsddb面临的第一问题是使用什么数据访问方法,bdb支持四种:btree, hash, queue, r

随机推荐