用Python实现通过哈希算法检测图片重复的教程

Iconfinder 是一个图标搜索引擎,为设计师、开发者和其他创意工作者提供精美图标,目前托管超过 34 万枚图标,是全球最大的付费图标库。用户也可以在 Iconfinder 的交易板块上传出售原创作品。每个月都有成千上万的图标上传到Iconfinder,同时也伴随而来大量的盗版图。Iconfinder 工程师 Silviu Tantos 在本文中提出一个新颖巧妙的图像查重技术,以杜绝盗版。

我们将在未来几周之内推出一个检测上传图标是否重复的功能。例如,如果用户下载了一个图标然后又试图通过上传它来获利(曾发生过类似案例),那么通过我们的方法,就可以检测出该图标是否已存在,并且标记该账户欺诈。在大量文件中检测某文件是否已经存在的一个常用方法是,通过计算数据集中每一个文件的哈希值,并将该哈希值存储在数组库中。当想要查找某特定文件时,首先计算该文件哈希值,然后在数据库中查找该哈希值。
选择一个哈希算法

加密哈希算法是一个常用的哈希算法。类似MD5,SHA1,SHA256这种在任何一种语言都可以找到可调用的标准库,它们对于简单的用例非常有效。

例如,在Python中先导入hashlib模块,然后调用函数就可以生成某一个字符串或者文件的哈希值。

>>> import hashlib

# Calculating the hash value of a string.
>>> hashlib.md5('The quick brown fox jumps over the lazy dog').hexdigest()
'9e107d9d372bb6826bd81d3542a419d6'

# Loading an image file into memory and calculating it's hash value.
>>> image_file = open('data/cat_grumpy_orig.png').read()
>>> hashlib.md5(image_file).hexdigest()
'3e1f6e9f2689d59b9ed28bcdab73455f'

这个算法对于未被篡改的上传文件非常有效,如果输入数据有细微变化,加密哈希算法都会导致雪崩效应,从而造成新文件的哈希值完全不同于原始文件哈希值。

比如下面这个例子,它在句子的结尾多加了一个句号。

# Original text.
>>> hashlib.md5('The quick brown fox jumps over the lazy dog').hexdigest()
'9e107d9d372bb6826bd81d3542a419d6'

# Slight modification of the text.
>>> hashlib.md5('The quick brown fox jumps over the lazy dog.').hexdigest()
'e4d909c290d0fb1ca068ffaddf22cbd0'

如果图像背景色被改变,图像被裁剪,旋转或者某一个像素被修改,那么都无法在图像哈希库中匹配。可见传统哈希算法并不具有实用性。正如你在上面例子中看到的,哈希值9 e107d9d372bb6826bd81d3542a419d6 和e4d909c290d0fb1ca068ffaddf22cbd0几乎是不同的(除了几个字符)。

例如,修改图像中猫咪鼻子的颜色后,图像的哈希值将改变。

# Load the original image into memory and calculate it's hash value.
>>> image_file = open('data/cat_grumpy_orig.png').read()
>>> hashlib.md5(image_file).hexdigest()
'3e1f6e9f2689d59b9ed28bcdab73455f'

# Load the modified image into memory and calculate it's hash value.
>>> image_file_modified = open('data/cat_grumpy_modif.png').read()
>>> hashlib.md5(image_file_modified).hexdigest()
'12d1b9409c3e8e0361c24beaee9c0ab1'

目前已有许多感知哈希算法,本文将要提出一个新的dhash(差异哈希)算法,该算法计算相邻像素之间的亮度差异并确定相对梯度。对于以上的用例,感知哈希算法将非常有效。感知哈希算法从文件内容的各种特征中获得一个能够灵活分辨不同文件微小区别的多媒体文件指纹。

dHash

深入学习dHash算法前,先介绍一些基础知识。一个彩色图像是由RGB三原色组成,可以看成一个红绿蓝三原色的颜色集。比如利用用Python图像库(PIL)加载一个图像,并打印像素值。

Test image

>>> from PIL import Image
>>> test_image = Image.open('data/test_image.jpg')

# The image is an RGB image with a size of 8x8 pixels.
>>> print 'Image Mode: %s' % test_image.mode
Image Mode: RGB
>>> print 'Width: %s px, Height: %s px' % (test_image.size[0], test_image.size[1])
Width: 4 px, Height: 4 px

# Get the pixel values from the image and print them into rows based on
# the image's width.
>>> width, height = test_image.size
>>> pixels = list(test_image.getdata())
>>> for col in xrange(width):
...  print pixels[col:col+width]
...
[(255, 0, 0), (0, 255, 0), (0, 0, 255), (255, 255, 255)]
[(0, 0, 0), (212, 45, 45), (51, 92, 154), (130, 183, 47)]
[(206, 210, 198), (131, 78, 8), (131, 156, 180), (117, 155, 201)]
[(104, 133, 170), (215, 130, 20), (153, 155, 155), (104, 142, 191)]

现在我们回到dHash算法,该算法有四个步骤,本文详细说明每一步并验证它在原始图像和修改后图像的效果。前三个像素的红绿蓝颜色强度值分别为255,其余两个颜色强度值分别为0,纯黑色像素三原色为0,纯白色像素三原色为255。其它颜色像素则是由不同强度三原色值组成的。

1.图像灰度化

通过灰度化图像,将像素值减少到一个发光强度值。例如,白色像素(255、255、255)成为255而黑色像素(0,0,0)强度值将成为0。

2.将图像缩小到一个常见大小

将图像缩减到一个常见基础尺寸,比如宽度大高度一个像素值的9*8像素大小(到第三步你就能明白为什么是这个尺寸)。通过这个方法将图像中的高频和细节部分移除,从而获得一个有72个强度值的样本。由于调整或者拉伸图像并不会改变它的哈希值,所以将所有图像归一化到该大小。

3.比较邻域像素

前两步实现后得到一个强度值列表,比较该二进制值数组的每一行的相邻像素。

>>> from PIL import Image
>>> img = Image.open('data/cat_grumpy_orig_after_step_2.png')
>>> width, height = img.size
>>> pixels = list(img.getdata())
>>> for col in xrange(width):
...  print pixels[col:col+width]
...
[254, 254, 255, 253, 248, 254, 255, 254, 255]
[254, 255, 253, 248, 254, 255, 254, 255, 255]
[253, 248, 254, 255, 254, 255, 255, 255, 222]
[248, 254, 255, 254, 255, 255, 255, 222, 184]
[254, 255, 254, 255, 255, 255, 222, 184, 177]
[255, 254, 255, 255, 255, 222, 184, 177, 184]
[254, 255, 255, 255, 222, 184, 177, 184, 225]
[255, 255, 255, 222, 184, 177, 184, 225, 255]

第一个值254和第二个254做比较,第二个值和第三个值比,以此类推,从而每行得到8个布尔值。

>>> difference = []
>>> for row in xrange(height):
...  for col in xrange(width):
...   if col != width:
...    difference.append(pixels[col+row] > pixels[(col+row)+1])
...
>>> for col in xrange(width-1):
...  print difference[col:col+(width-1)]
...
[False, False, True, True, False, False, True, False]
[False, True, True, False, False, True, False, False]
[True, True, False, False, True, False, False, False]
[True, False, False, True, False, False, False, True]
[False, False, True, False, False, False, True, True]
[False, True, False, False, False, True, True, False]
[True, False, False, False, True, True, False, False]
[False, False, False, True, True, False, False, True]

4.转换为二值

为了方便哈希值存储和使用,将8个布尔值转换为16进制字符串。Ture变成1,而False变成0。
Python实现

下面是完整Python实现的完成算法:

def dhash(image, hash_size = 8):
  # Grayscale and shrink the image in one step.
  image = image.convert('L').resize(
    (hash_size + 1, hash_size),
    Image.ANTIALIAS,
  )

  pixels = list(image.getdata())

  # Compare adjacent pixels.
  difference = []
  for row in xrange(hash_size):
    for col in xrange(hash_size):
      pixel_left = image.getpixel((col, row))
      pixel_right = image.getpixel((col + 1, row))
      difference.append(pixel_left > pixel_right)

  # Convert the binary array to a hexadecimal string.
  decimal_value = 0
  hex_string = []
  for index, value in enumerate(difference):
    if value:
      decimal_value += 2**(index % 8)
    if (index % 8) == 7:
      hex_string.append(hex(decimal_value)[2:].rjust(2, '0'))
      decimal_value = 0

  return ''.join(hex_string)

最常见情况,图片稍有不同,哈希值很可能是相同的,所以我们可以直接比较。

>>> from PIL import Image
>>> from utility import dhash, hamming_distance
>>> orig = Image.open('data/cat_grumpy_orig.png')
>>> modif = Image.open('data/cat_grumpy_modif.png')
>>> dhash(orig)
'4c8e3366c275650f'
>>> dhash(modif)
'4c8e3366c275650f'
>>> dhash(orig) == dhash(modif)
True

如果有一

个保存哈希值的SQL数据库, 可以这样简单判断哈希值“4 c8e3366c275650f ”是否存在:

SELECT pk, hash, file_path FROM image_hashes
  WHERE hash = '4c8e3366c275650f';

现在,对于一些有较大差别的图像,它们的哈希值可能是不相同的,那么需要计算由一个字符串变成另一个字符串所需替换的最少字符数,即汉明距离。
维基百科上有一些计算两个字符串之间的汉明距离的Python示例代码。但是也可以直接基于MySQL数据库上的计算和查询来实现。

SELECT pk, hash, BIT_COUNT(
  CONV(hash, 16, 10) ^ CONV('4c8e3366c275650f', 16, 10)
) as hamming_distance
  FROM image_hashes
  HAVING hamming_distance < 4
  ORDER BY hamming_distance ASC;

对所查询的值与数据库中的哈希值进行异或操作,计数不同位数。由于BIT_COUNT只能操作整数,所以要将所有十六进制的哈希值转成十进制。

结束语

本文使用Python实现了所介绍的算法,当然了读者可以使用任何编程语言实现算法。

在简介中提过,本文算法将应用到Iconfinder上去防止重复提交图标,可以预想,感知哈希算法还有更多实际应用。因为有相似特征的图像的哈希值也是相似的,所以它可以帮助图像推荐系统寻找相似图像。

(0)

相关推荐

  • kNN算法python实现和简单数字识别的方法

    本文实例讲述了kNN算法python实现和简单数字识别的方法.分享给大家供大家参考.具体如下: kNN算法算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数: tile() 如tile(A,n)就是将A重复n次

  • python 实现插入排序算法

    复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,

  • python k-近邻算法实例分享

    简单说明 这个算法主要工作是测量不同特征值之间的距离,有个这个距离,就可以进行分类了. 简称kNN. 已知:训练集,以及每个训练集的标签. 接下来:和训练集中的数据对比,计算最相似的k个距离.选择相似数据中最多的那个分类.作为新数据的分类. python实例 复制代码 代码如下: # -*- coding: cp936 -*- #win系统中应用cp936编码,linux中最好还是utf-8比较好.from numpy import *#引入科学计算包import operator #经典pyt

  • python实现simhash算法实例

    Simhash的算法简单的来说就是,从海量文本中快速搜索和已知simhash相差小于k位的simhash集合,这里每个文本都可以用一个simhash值来代表,一个simhash有64bit,相似的文本,64bit也相似,论文中k的经验值为3.该方法的缺点如优点一样明显,主要有两点,对于短文本,k值很敏感:另一个是由于算法是以空间换时间,系统内存吃不消. 复制代码 代码如下: #!/usr/bin/python# coding=utf-8class simhash: #构造函数    def __

  • Python算法之栈(stack)的实现

    本文以实例形式展示了Python算法中栈(stack)的实现,对于学习数据结构域算法有一定的参考借鉴价值.具体内容如下: 1.栈stack通常的操作: Stack() 建立一个空的栈对象 push() 把一个元素添加到栈的最顶层 pop() 删除栈最顶层的元素,并返回这个元素 peek()  返回最顶层的元素,并不删除它 isEmpty()  判断栈是否为空 size()  返回栈中元素的个数 2.简单案例以及操作结果: Stack Operation Stack Contents Return

  • python实现RSA加密(解密)算法

    RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. 今天只有短的RSA钥匙才可能被强力方式解破.到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式.只要其密钥的长度足够长,用RSA加密的信息实际上是不能被解破的.但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战. RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥.

  • Python 连连看连接算法

    功能:为连连看游戏提供连接算法 说明:模块中包含一个Point类,该类是游戏的基本单元"点",该类包含属性:x,y,value. 其中x,y代表了该点的坐标,value代表该点的特征:0代表没有被填充,1-8代表被填充为游戏图案,9代表被填充为墙壁 模块中还包含一个名为points的Point列表,其中保存着整个游戏界面中的每个点 使用模块的时候应首先调用createPoints方法,初始化游戏界面中每个点,然后可通过points访问到每个点,继而初始化界面 模块中核心的方法是link

  • Python实现的中国剩余定理算法示例

    本文实例讲述了Python实现的中国剩余定理算法.分享给大家供大家参考,具体如下: 中国剩余定理(Chinese Remainder Theorem-CRT):又称孙子定理,是数论中的一个定理.即如果一个人知道了一个数n被多个整数相除得到的余数,当这些除数两两互质的情况下,这个人就可以唯一的确定被这些个整数乘积除n所得的余数. 维基百科上wiki:The Chinese remainder theorem is a theorem of number theory, which states t

  • Python实现的Kmeans++算法实例

    1.从Kmeans说起 Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了.下面说一下如何在matlab中使用kmeans算法. 创建7个二维的数据点: 复制代码 代码如下: x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]]; 使用kmeans函数: 复制代码 代码如下: class = kmeans(x, 2); x是数据点,x的每一行代表一个数据:2指定要有2个中心点,也就是聚类结果要有2个簇. class将是一个具有7

  • python使用rsa加密算法模块模拟新浪微博登录

    PC登录新浪微博时,在客户端用js预先对用户名.密码都进行了加密,而且在POST之前会GET一组参数,这也将作为POST_DATA的一部分.这样,就不能用通常的那种简单方法来模拟POST登录(比如人人网). 通过爬虫获取新浪微博数据,模拟登录是必不可少的. 1.在提交POST请求之前,需要GET获取四个参数(servertime,nonce,pubkey和rsakv),不是之前提到的只是获取简单的servertime,nonce,这里主要是由于js对用户名.密码加密方式改变了. 1.1 由于加密

  • python编写的最短路径算法

    一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法.算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录.首先画出一幅无向图如下,标出各个节点之间的权值. 其中对应索引: A --> 0 B--> 1 C--> 2 D-->3 E--> 4 F--> 5 G--> 6 邻接矩阵表示无向图: 算法思想是通过Dijkstra算法结合自身想法实现的.大致思路是:从起始点开始,搜索周围的路径

  • 朴素贝叶斯算法的python实现方法

    本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 比如我们想判断一个邮件是不是垃圾邮件,那么我们知道的是这个邮件中的词的分布,那么我们还要知道:垃圾邮件中某些词的出现是多少,就可以利用贝叶斯定理得到. 朴素贝叶斯分类器中的一个假设是:每个特征同等重要 函数 loadDataSet() 创建数据集,这里的数据集

随机推荐