深入解析Python中的上下文管理器

1. 上下文管理器是什么?

举个例子,你在写Python代码的时候经常将一系列操作放在一个语句块中:

(1)当某条件为真 – 执行这个语句块

(2)当某条件为真 – 循环执行这个语句块

有时候我们需要在当程序在语句块中运行时保持某种状态,并且在离开语句块后结束这种状态。

所以,事实上上下文管理器的任务是 – 代码块执行前准备,代码块执行后收拾。

上下文管理器是在Python2.5加入的功能,它能够让你的代码可读性更强并且错误更少。接下来,让我们来看看该如何使用。

2. 如何使用上下文管理器?

看代码是最好的学习方式,来看看我们通常是如何打开一个文件并写入”Hello World”?

filename = 'my_file.txt'
mode = 'w' # Mode that allows to write to the file
writer = open(filename, mode)
writer.write('Hello ')
writer.write('World')
writer.close()

1-2行,我们指明文件名以及打开方式(写入)。

第3行,打开文件,4-5行写入“Hello world”,第6行关闭文件。

这样不就行了,为什么还需要上下文管理器?但是我们忽略了一个很小但是很重要的细节:如果我们没有机会到达第6行关闭文件,那会怎样?

举个例子,磁盘已满,因此我们在第4行尝试写入文件时就会抛出异常,而第6行则根本没有机会执行。

当然,我们可以使用try-finally语句块来进行包装:

writer = open(filename, mode)
try:
  writer.write('Hello ')
  writer.write('World')
finally:
  writer.close()

finally语句块中的代码无论try语句块中发生了什么都会执行。因此可以保证文件一定会关闭。这么做有什么问题么?当然没有,但当我们进行一些比写入“Hello world”更复杂的事情时,try-finally语句就会变得丑陋无比。例如我们要打开两个文件,一个读一个写,两个文件之间进行拷贝操作,那么通过with语句能够保证两者能够同时被关闭。

OK,让我们把事情分解一下:

(1)首先,创建一个名为“writer”的文件变量。

(2)然后,对writer执行一些操作。

(3)最后,关闭writer。

这样是不是优雅多了?

with open(filename, mode) as writer:
  writer.write('Hello ')
  writer.write('World')

让我们深入一点,“with”是一个新关键词,并且总是伴随着上下文管理器出现。“open(filename, mode)”曾经在之前的代码中出现。“as”是另一个关键词,它指代了从“open”函数返回的内容,并且把它赋值给了一个新的变量。“writer”是一个新的变量名。

2-3行,缩进开启一个新的代码块。在这个代码块中,我们能够对writer做任意操作。这样我们就使用了“open”上下文管理器,它保证我们的代码既优雅又安全。它出色的完成了try-finally的任务。

open函数既能够当做一个简单的函数使用,又能够作为上下文管理器。这是因为open函数返回了一个文件类型(file type)变量,而这个文件类型实现了我们之前用到的write方法,但是想要作为上下文管理器还必须实现一些特殊的方法,我会在接下来的小节中介绍。

3. 自定义上下文管理器

让我们来写一个“open”上下文管理器。

要实现上下文管理器,必须实现两个方法 – 一个负责进入语句块的准备操作,另一个负责离开语句块的善后操作。同时,我们需要两个参数:文件名和打开方式。

Python类包含两个特殊的方法,分别名为:__enter__以及__exit__(双下划线作为前缀及后缀)。

当一个对象被用作上下文管理器时:

(1)__enter__ 方法将在进入代码块前被调用。

(2)__exit__ 方法则在离开代码块之后被调用(即使在代码块中遇到了异常)。

下面是上下文管理器的一个例子,它分别进入和离开代码块时进行打印。

class PypixContextManagerDemo:

  def __enter__(self):
    print 'Entering the block'

  def __exit__(self, *unused):
    print 'Exiting the block'

with PypixContextManagerDemo():
  print 'In the block'

#Output:
#Entering the block
#In the block
#Exiting the block

注意一些东西:

(1)没有传递任何参数。
(2)在此没有使用“as”关键词。
稍后我们将讨论__exit__方法的参数设置。
我们如何给一个类传递参数?其实在任何类中,都可以使用__init__方法,在此我们将重写它以接收两个必要参数(filename, mode)。

当我们进入语句块时,将会使用open函数,正如第一个例子中那样。而当我们离开语句块时,将关闭一切在__enter__函数中打开的东西。

以下是我们的代码:

class PypixOpen:

  def __init__(self, filename, mode):
    self.filename = filename
    self.mode = mode

  def __enter__(self):
    self.openedFile = open(self.filename, self.mode)
    return self.openedFile

  def __exit__(self, *unused):
    self.openedFile.close()

with PypixOpen(filename, mode) as writer:
  writer.write("Hello World from our new Context Manager!")

来看看有哪些变化:

(1)3-5行,通过__init__接收了两个参数。

(2)7-9行,打开文件并返回。

(3)12行,当离开语句块时关闭文件。

(4)14-15行,模仿open使用我们自己的上下文管理器。

除此之外,还有一些需要强调的事情:

4.如何处理异常

我们完全忽视了语句块内部可能出现的问题。

如果语句块内部发生了异常,__exit__方法将被调用,而异常将会被重新抛出(re-raised)。当处理文件写入操作时,大部分时间你肯定不希望隐藏这些异常,所以这是可以的。而对于不希望重新抛出的异常,我们可以让__exit__方法简单的返回True来忽略语句块中发生的所有异常(大部分情况下这都不是明智之举)。

我们可以在异常发生时了解到更多详细的信息,完备的__exit__函数签名应该是这样的:

def __exit__(self, exc_type, exc_val, exc_tb)

这样__exit__函数就能够拿到关于异常的所有信息(异常类型,异常值以及异常追踪信息),这些信息将帮助异常处理操作。在这里我将不会详细讨论异常处理该如何写,以下是一个示例,只负责抛出SyntaxErrors异常。

class RaiseOnlyIfSyntaxError:

  def __enter__(self):
    pass

  def __exit__(self, exc_type, exc_val, exc_tb):
    return SyntaxError != exc_type

捕获异常:
当一个异常在with块中抛出时,它作为参数传递给__exit__。三个参数被使用,和sys.exc_info()返回的相同:类型、值和回溯(traceback)。当没有异常抛出时,三个参数都是None。上下文管理器可以通过从__exit__返回一个真(True)值来“吞下”异常。例外可以轻易忽略,因为如果__exit__不使用return直接结束,返回None——一个假(False)值,之后在__exit__结束后重新抛出。

捕获异常的能力创造了有意思的可能性。一个来自单元测试的经典例子——我们想确保一些代码抛出正确种类的异常:

class assert_raises(object):
  # based on pytest and unittest.TestCase
  def __init__(self, type):
    self.type = type
  def __enter__(self):
    pass
  def __exit__(self, type, value, traceback):
    if type is None:
      raise AssertionError('exception expected')
    if issubclass(type, self.type):
      return True # swallow the expected exception
    raise AssertionError('wrong exception type')

with assert_raises(KeyError):
  {}['foo']

5. 谈一些关于上下文库(contextlib)的内容

contextlib是一个Python模块,作用是提供更易用的上下文管理器。

(1)contextlib.closing

假设我们有一个创建数据库函数,它将返回一个数据库对象,并且在使用完之后关闭相关资源(数据库连接会话等)

我们可以像以往那样处理或是通过上下文管理器:

with contextlib.closing(CreateDatabase()) as database:
  database.query()

contextlib.closing方法将在语句块结束后调用数据库的关闭方法。

(2)contextlib.nested

另一个很cool的特性能够有效地帮助我们减少嵌套:

假设我们有两个文件,一个读一个写,需要进行拷贝。

以下是不提倡的:

with open('toReadFile', 'r') as reader:
  with open('toWriteFile', 'w') as writer:
    writer.writer(reader.read())

可以通过contextlib.nested进行简化:

with contextlib.nested(open('fileToRead.txt', 'r'),
            open('fileToWrite.txt', 'w')) as (reader, writer):
  writer.write(reader.read())

在Python2.7中这种写法被一种新语法取代:

with open('fileToRead.txt', 'r') as reader, \
    open('fileToWrite.txt', 'w') as writer:
    writer.write(reader.read())
contextlib.contextmanager

对于Python高级玩家来说,任何能够被yield关键词分割成两部分的函数,都能够通过装饰器装饰的上下文管理器来实现。任何在yield之前的内容都可以看做在代码块执行前的操作,而任何yield之后的操作都可以放在exit函数中。

这里我举一个线程锁的例子:

锁机制保证两段代码在同时执行时不会互相干扰。例如我们有两块并行执行的代码同时写一个文件,那我们将得到一个混合两份输入的错误文件。但如果我们能有一个锁,任何想要写文件的代码都必须首先获得这个锁,那么事情就好办了。如果你想了解更多关于并发编程的内容,请参阅相关文献。

下面是线程安全写函数的例子:

import threading

lock = threading.Lock()

def safeWriteToFile(openedFile, content):
  lock.acquire()
  openedFile.write(content)
  lock.release()

接下来,让我们用上下文管理器来实现,回想之前关于yield和contextlib的分析:

@contextlib.contextmanager
def loudLock():
  print 'Locking'
  lock.acquire()
  yield
  print 'Releasing'
  lock.release()

with loudLock():
  print 'Lock is locked: %s' % lock.locked()
  print 'Doing something that needs locking'

#Output:
#Locking
#Lock is locked: True
#Doing something that needs locking
#Releasing

特别注意,这不是异常安全(exception safe)的写法。如果你想保证异常安全,请对yield使用try语句。幸运的是threading。lock已经是一个上下文管理器了,所以我们只需要简单地:

@contextlib.contextmanager
def loudLock():
  print 'Locking'
  with lock:
    yield
  print 'Releasing'

因为threading.lock在异常发生时会通过__exit__函数返回False,这将在yield被调用是被重新抛出。这种情况下锁将被释放,但对于“print ‘Releasing'”的调用则不会被执行,除非我们重写try-finally。

如果你希望在上下文管理器中使用“as”关键字,那么就用yield返回你需要的值,它将通过as关键字赋值给新的变量。下面我们就仔细来讲一下。

6.使用生成器定义上下文管理器
当讨论生成器时,据说我们相比实现为类的迭代器更倾向于生成器,因为它们更短小方便,状态被局部保存而非实例和变量中。另一方面,正如双向通信章节描述的那样,生成器和它的调用者之间的数据流可以是双向的。包括异常,可以直接传递给生成器。我们想将上下文管理器实现为特殊的生成器函数。事实上,生成器协议被设计成支持这个用例。

@contextlib.contextmanager
def some_generator(<arguments>):
  <setup>
  try:
    yield <value>
  finally:
    <cleanup>

contextlib.contextmanager装饰一个生成器并转换为上下文管理器。生成器必须遵循一些被包装(wrapper)函数强制执行的法则——最重要的是它至少yield一次。yield之前的部分从__enter__执行,上下文管理器中的代码块当生成器停在yield时执行,剩下的在__exit__中执行。如果异常被抛出,解释器通过__exit__的参数将之传递给包装函数,包装函数于是在yield语句处抛出异常。通过使用生成器,上下文管理器变得更短小精炼。

让我们用生成器重写closing的例子:

@contextlib.contextmanager
def closing(obj):
  try:
    yield obj
  finally:
    obj.close()

再把assert_raises改写成生成器:

@contextlib.contextmanager
def assert_raises(type):
  try:
    yield
  except type:
    return
  except Exception as value:
    raise AssertionError('wrong exception type')
  else:
    raise AssertionError('exception expected')

这里我们用装饰器将生成函数转化为上下文管理器!

(0)

相关推荐

  • 遗传算法之Python实现代码

    写在前面 之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了.这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了. Python的遗传算法主函数 我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness.因此我们就可以通过直接建立对象来作为种群中的个体. #染色体的类 class Chrom: chrom = [] fitness = 0 def showCh

  • 正确理解python中的关键字“with”与上下文管理器

    前言 如果你有阅读源码的习惯,可能会看到一些优秀的代码经常出现带有 "with" 关键字的语句,它通常用在什么场景呢?今天就来说说 with 和 上下文管理器. 对于系统资源如文件.数据库连接.socket 而言,应用程序打开这些资源并执行完业务逻辑之后,必须做的一件事就是要关闭(断开)该资源. 比如 Python 程序打开一个文件,往文件中写内容,写完之后,就要关闭该文件,否则会出现什么情况呢?极端情况下会出现 "Too many open files" 的错误,

  • Python中的with语句与上下文管理器学习总结

    0.关于上下文管理器 上下文管理器是可以在with语句中使用,拥有__enter__和__exit__方法的对象. with manager as var: do_something(var) 相当于以下情况的简化: var = manager.__enter__() try: do_something(var) finally: manager.__exit__() 换言之,PEP 343中定义的上下文管理器协议允许将无聊的try...except...finally结构抽象到一个单独的类中,

  • 深入学习Python中的上下文管理器与else块

    前言 本文主要个大家介绍了关于Python上下文管理器与else块的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 在开始之前,我们先来看看下面这段话: 最终,上下文管理器可能几乎与子程序(subroutine)本身一样重要.目前,我们只了解了上下文管理器的皮毛--Basic 语言有with 语句,而且很多语言都有.但是,在各种语言中 with 语句的作用不同,而且做的都是简单的事,虽然可以避免不断使用点号查找属性,但是不会做事前准备和事后清理.不要觉得名字一样,就意

  • python 上下文管理器使用方法小结

    上下文管理器最常用的是确保正确关闭文件, with open('/path/to/file', 'r') as f: f.read() with 语句的基本语法, with expression [as variable]: with-block expression是一个上下文管理器,其实现了enter和exit两个函数.当我们调用一个with语句时, 依次执行一下步骤, 1.首先生成一个上下文管理器expression, 比如open('xx.txt'). 2.执行expression.en

  • Python深入学习之上下文管理器

    上下文管理器(context manager)是Python2.5开始支持的一种语法,用于规定某个对象的使用范围.一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存).它的语法形式是with...as... 关闭文件 我们会进行这样的操作:打开文件,读写,关闭文件.程序员经常会忘记关闭文件.上下文管理器可以在不需要文件的时候,自动关闭文件. 下面我们看一下两段程序: 复制代码 代码如下: # without context manager f = open("new.t

  • Python上下文管理器和with块详解

    上下文管理器和with块,具体内容如下 上下文管理器对象存在的目的是管理 with 语句,就像迭代器的存在是为了管理 for 语句一样. with 语句的目的是简化 try/finally 模式.这种模式用于保证一段代码运行完毕后执行某项操作,即便那段代码由于异常. return 语句或 sys.exit() 调用而中止,也会执行指定的操作. finally 子句中的代码通常用于释放重要的资源,或者还原临时变更的状态. ==上下文管理器协议包含enter和exit两个方法==. with 语句开

  • 深入解析Python中的上下文管理器

    1. 上下文管理器是什么? 举个例子,你在写Python代码的时候经常将一系列操作放在一个语句块中: (1)当某条件为真 – 执行这个语句块 (2)当某条件为真 – 循环执行这个语句块 有时候我们需要在当程序在语句块中运行时保持某种状态,并且在离开语句块后结束这种状态. 所以,事实上上下文管理器的任务是 – 代码块执行前准备,代码块执行后收拾. 上下文管理器是在Python2.5加入的功能,它能够让你的代码可读性更强并且错误更少.接下来,让我们来看看该如何使用. 2. 如何使用上下文管理器? 看

  • Python中的上下文管理器相关知识详解

    前言 with 这个关键字,对于每一学习Python的人,都不会陌生. 操作文本对象的时候,几乎所有的人都会让我们要用 with open ,这就是一个上下文管理的例子.你一定已经相当熟悉了,我就不再废话了. with open('test.txt') as f: print f.readlines() 什么是上下文管理器? 基本语法 with EXPR as VAR: BLOCK 先理清几个概念 1. 上下文表达式:with open('test.txt') as f: 2. 上下文管理器:o

  • Python中的上下文管理器和with语句的使用

    Python2.5之后引入了上下文管理器(context manager),算是Python的黑魔法之一,它用于规定某个对象的使用范围.本文是针对于该功能的思考总结. 为什么需要上下文管理器? 首先,需要思索下为什么需要引入上下文管理器. 在正常情况下,管理各种系统资源(如文件).数据库连接时,通常是先打开这些资源,执行完相应的业务逻辑,最后关闭资源. 举两个例子: 1.使用Python打开一个文件写入内容,之后需要关闭这个文件.如果不正常关闭的话可能会在文件操作时出现异常,因为系统允许你打开的

  • Python with语句上下文管理器两种实现方法分析

    本文实例讲述了Python with语句上下文管理器.分享给大家供大家参考,具体如下: 在编程中会经常碰到这种情况:有一个特殊的语句块,在执行这个语句块之前需要先执行一些准备动作:当语句块执行完成后,需要继续执行一些收尾动作.例如,文件读写后需要关闭,数据库读写完毕需要关闭连接,资源的加锁和解锁等情况. 对于这种情况python提供了上下文管理器(Context Manager)的概念,可以通过上下文管理器来定义/控制代码块执行前的准备动作,以及执行后的收尾动作. 一.为何使用上下文管理器 1.

  • Python中with上下文管理协议的作用及用法

    目录 1.简介 2.try… except语句 (1)try…except的标准格式 (2)程序执行流程 (3)异常分类 3.try…finallly语句 4.with…as语句 (1)With语句的基本语法 (2)with语句原理 1.简介 with是从Python2.5引入的一个新的语法,它是一种上下文管理协议,目的在于从流程图中把 try,except 和finally 关键字和资源分配释放相关代码统统去掉,简化try…except…finlally的处理流程. 那我们先理解一下try…e

  • Python编程ContextManager上下文管理器讲解

    目录 什么是上下文管理器 官方解释 简单一句话 __enter__(self) __exit__(self, exc_type, exc_value, exc_traceback) 有哪些常见上下文管理器? 打开文件 拆分了解 执行顺序 自定义上下文管理器 基于类实现上下文管理器 总结 基于生成器实现上下文管理器 总结 with 语句的教程 什么是上下文管理器 官方解释 上下文管理器是一个对象它定义了在执行 with 语句时要建立的运行时上下文上下文管理器处理进入和退出所需的运行时上下文以执行代

  • 详解Python中contextlib上下文管理模块的用法

    咱们用的os模块,读取文件的时候,其实他是含有__enter__ __exit__ .  一个是with触发的时候,一个是退出的时候. with file('nima,'r') as f: print f.readline() 那咱们自己再实现一个标准的可以with的类. 我个人写python的时候,喜欢针对一些需要有关闭逻辑的代码,构造成with的模式 . #encoding:utf-8 class echo: def __enter__(self): print 'enter' def __

  • 解析python中的jsonpath 提取器

    目录 为什么要用jsonpath jsonpath的语法 jsonpath 解析 使用示例 为什么要用jsonpath 就跟为什么要用xpath一样,jsonpath的设计灵感来源于xpath.一个强大的json数据提取工具.让用户不用编写脚本就可以提取到相应的json数据. jsonpath的语法 jsonpath可以什么这两种模式来检索数据:以点为分隔$.store.book[0].title$.store.book[0,1] #可以取到第一个和第二个book值$.store.book[*]

  • 深入解析Python中的descriptor描述器的作用及用法

    一般来说,一个描述器是一个有"绑定行为"的对象属性(object attribute),它的访问控制被描述器协议方法重写.这些方法是 __get__(), __set__(), 和 __delete__() .有这些方法的对象叫做描述器. 默认对属性的访问控制是从对象的字典里面(__dict__)中获取(get), 设置(set)和删除(delete)它.举例来说, a.x 的查找顺序是, a.__dict__['x'] , 然后 type(a).__dict__['x'] , 然后找

随机推荐