python实现mean-shift聚类算法

本文实例为大家分享了python实现mean-shift聚类算法的具体代码,供大家参考,具体内容如下

1、新建MeanShift.py文件

import numpy as np

# 定义 预先设定 的阈值
STOP_THRESHOLD = 1e-4
CLUSTER_THRESHOLD = 1e-1

# 定义度量函数
def distance(a, b):
 return np.linalg.norm(np.array(a) - np.array(b))

# 定义高斯核函数
def gaussian_kernel(distance, bandwidth):
 return (1 / (bandwidth * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((distance / bandwidth)) ** 2)

# mean_shift类
class mean_shift(object):
 def __init__(self, kernel=gaussian_kernel):
  self.kernel = kernel

 def fit(self, points, kernel_bandwidth):

  shift_points = np.array(points)
  shifting = [True] * points.shape[0]

  while True:
   max_dist = 0
   for i in range(0, len(shift_points)):
    if not shifting[i]:
     continue
    p_shift_init = shift_points[i].copy()
    shift_points[i] = self._shift_point(shift_points[i], points, kernel_bandwidth)
    dist = distance(shift_points[i], p_shift_init)
    max_dist = max(max_dist, dist)
    shifting[i] = dist > STOP_THRESHOLD

   if(max_dist < STOP_THRESHOLD):
    break
  cluster_ids = self._cluster_points(shift_points.tolist())
  return shift_points, cluster_ids

 def _shift_point(self, point, points, kernel_bandwidth):
  shift_x = 0.0
  shift_y = 0.0
  scale = 0.0
  for p in points:
   dist = distance(point, p)
   weight = self.kernel(dist, kernel_bandwidth)
   shift_x += p[0] * weight
   shift_y += p[1] * weight
   scale += weight
  shift_x = shift_x / scale
  shift_y = shift_y / scale
  return [shift_x, shift_y]

 def _cluster_points(self, points):
  cluster_ids = []
  cluster_idx = 0
  cluster_centers = []

  for i, point in enumerate(points):
   if(len(cluster_ids) == 0):
    cluster_ids.append(cluster_idx)
    cluster_centers.append(point)
    cluster_idx += 1
   else:
    for center in cluster_centers:
     dist = distance(point, center)
     if(dist < CLUSTER_THRESHOLD):
      cluster_ids.append(cluster_centers.index(center))
    if(len(cluster_ids) < i + 1):
     cluster_ids.append(cluster_idx)
     cluster_centers.append(point)
     cluster_idx += 1
  return cluster_ids

2、调用上述py文件

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 09 11:02:08 2018

@author: muli
"""

from sklearn.datasets.samples_generator import make_blobs
import matplotlib.pyplot as plt
import random
import numpy as np
import MeanShift

def colors(n):
 ret = []
 for i in range(n):
 ret.append((random.uniform(0, 1), random.uniform(0, 1), random.uniform(0, 1)))
 return ret

def main():
 centers = [[-1, -1], [-1, 1], [1, -1], [1, 1]]
 X, _ = make_blobs(n_samples=300, centers=centers, cluster_std=0.4)

 mean_shifter = MeanShift.mean_shift()
 _, mean_shift_result = mean_shifter.fit(X, kernel_bandwidth=0.5)

 np.set_printoptions(precision=3)
 print('input: {}'.format(X))
 print('assined clusters: {}'.format(mean_shift_result))
 color = colors(np.unique(mean_shift_result).size)

 for i in range(len(mean_shift_result)):
  plt.scatter(X[i, 0], X[i, 1], color = color[mean_shift_result[i]])
 plt.show()

if __name__ == '__main__':
 main()

结果如图所示:

参考链接

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python聚类算法之凝聚层次聚类实例分析

    本文实例讲述了Python聚类算法之凝聚层次聚类.分享给大家供大家参考,具体如下: 凝聚层次聚类:所谓凝聚的,指的是该算法初始时,将每个点作为一个簇,每一步合并两个最接近的簇.另外即使到最后,对于噪音点或是离群点也往往还是各占一簇的,除非过度合并.对于这里的"最接近",有下面三种定义.我在实现是使用了MIN,该方法在合并时,只要依次取当前最近的点对,如果这个点对当前不在一个簇中,将所在的两个簇合并就行: 单链(MIN):定义簇的邻近度为不同两个簇的两个最近的点之间的距离. 全链(MAX

  • Python实现的KMeans聚类算法实例分析

    本文实例讲述了Python实现的KMeans聚类算法.分享给大家供大家参考,具体如下: 菜鸟一枚,编程初学者,最近想使用Python3实现几个简单的机器学习分析方法,记录一下自己的学习过程. 关于KMeans算法本身就不做介绍了,下面记录一下自己遇到的问题. 一 .关于初始聚类中心的选取 初始聚类中心的选择一般有: (1)随机选取 (2)随机选取样本中一个点作为中心点,在通过这个点选取距离其较大的点作为第二个中心点,以此类推. (3)使用层次聚类等算法更新出初始聚类中心 我一开始是使用numpy

  • Python实现简单层次聚类算法以及可视化

    本文实例为大家分享了Python实现简单层次聚类算法,以及可视化,供大家参考,具体内容如下 基本的算法思路就是:把当前组间距离最小的两组合并成一组. 算法的差异在算法如何确定组件的距离,一般有最大距离,最小距离,平均距离,马氏距离等等. 代码如下: import numpy as np import data_helper np.random.seed(1) def get_raw_data(n): _data=np.random.rand(n,2) #生成数据的格式是n个(x,y) _grou

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • python实现鸢尾花三种聚类算法(K-means,AGNES,DBScan)

    一.分散性聚类(kmeans) 算法流程: 1.选择聚类的个数k. 2.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心. 3.对每个点确定其聚类中心点. 4.再计算其聚类新中心. 5.重复以上步骤直到满足收敛要求.(通常就是确定的中心点不再改变. 优点: 1.是解决聚类问题的一种经典算法,简单.快速 2.对处理大数据集,该算法保持可伸缩性和高效率 3.当结果簇是密集的,它的效果较好 缺点 1.在簇的平均值可被定义的情况下才能使用,可能不适用于某些应用 2.必须事先给出k(要生成的簇的数

  • Python聚类算法之DBSACN实例分析

    本文实例讲述了Python聚类算法之DBSACN.分享给大家供大家参考,具体如下: DBSCAN:是一种简单的,基于密度的聚类算法.本次实现中,DBSCAN使用了基于中心的方法.在基于中心的方法中,每个数据点的密度通过对以该点为中心以边长为2*EPs的网格(邻域)内的其他数据点的个数来度量.根据数据点的密度分为三类点: 核心点:该点在邻域内的密度超过给定的阀值MinPs. 边界点:该点不是核心点,但是其邻域内包含至少一个核心点. 噪音点:不是核心点,也不是边界点. 有了以上对数据点的划分,聚合可

  • python实现k均值算法示例(k均值聚类算法)

    简单实现平面的点K均值分析,使用欧几里得距离,并用pylab展示. 复制代码 代码如下: import pylab as pl #calc Euclid squiredef calc_e_squire(a, b):    return (a[0]- b[0]) ** 2 + (a[1] - b[1]) **2 #init the 20 pointa = [2,4,3,6,7,8,2,3,5,6,12,10,15,16,11,10,19,17,16,13]b = [5,6,1,4,2,4,3,1,

  • Python聚类算法之基本K均值实例详解

    本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数.每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个.然后,根据指派到簇的点,更新每个簇的质心.重复指派和更新操作,直到质心不发生明显的变化. # scoding=utf-8 import pylab as pl points = [[int(eachpoint.split("#")[0]), in

  • python中实现k-means聚类算法详解

    算法优缺点: 优点:容易实现 缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢 使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去. 1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好.另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚

  • K-means聚类算法介绍与利用python实现的代码示例

    聚类 今天说K-means聚类算法,但是必须要先理解聚类和分类的区别,很多业务人员在日常分析时候不是很严谨,混为一谈,其实二者有本质的区别. 分类其实是从特定的数据中挖掘模式,作出判断的过程.比如Gmail邮箱里有垃圾邮件分类器,一开始的时候可能什么都不过滤,在日常使用过程中,我人工对于每一封邮件点选"垃圾"或"不是垃圾",过一段时间,Gmail就体现出一定的智能,能够自动过滤掉一些垃圾邮件了.这是因为在点选的过程中,其实是给每一条邮件打了一个"标签&qu

随机推荐