python opencv 实现读取、显示、写入图像的方法

 opencv是一个强大的图像处理和计算机视觉库,实现了很多实用算法,值得学习和深究下。

opencv包安装

·  这里直接安装opencv-python包(非官方): pip install opencv-python

   官方文档:https://opencv-python-tutroals.readthedocs.io/en/latest/

1、读取图像

import cv2
image=cv2.imread("dog2.jpg",1)

说明:

第二个参数是一个标志,它指定了读取图像的方式。

  • cv.IMREAD_COLOR: 加载彩色图像。任何图像的透明度都会被忽视。它是默认标志。
  • cv.IMREAD_GRAYSCALE:以灰度模式加载图像
  • cv.IMREAD_UNCHANGED:加载图像,包括alpha通道

注意除了这三个标志,你可以分别简单地传递整数1、0或-1。

即使图像路径出现了错误,也不会报错,而是print(image)会输出None。

2、显示图像

cv2.imshow("image",image)
cv2.waitKey(0)
cv2.destroyAllWindows()

说明:

使用函数cv.imshow()在窗口中显示图像。窗口自动适合图像尺寸。

cv.waitKey()是一个键盘绑定函数。其参数是以毫秒为单位的时间。该函数等待任何键盘事件指定的毫秒。如果您在这段时间内按下任何键,程序将继续运行。如果0被传递,它将无限期地等待一次敲击键。它也可以设置为检测特定的按键,例如,如果按下键 a 等,我们将在下面讨论。

注意 除了键盘绑定事件外,此功能还处理许多其他GUI事件,因此你必须使用它来实际显示图像。

cv.destroyAllWindows()只会破坏我们创建的所有窗口。如果要销毁任何特定的窗口,请使用函数cv.destroyWindow()在其中传递确切的窗口名称作为参数。

注意在特殊情况下,你可以创建一个空窗口,然后再将图像加载到该窗口。在这种情况下,你可以指定窗口是否可调整大小。这是通过功能cv.namedWindow()完成的。默认情况下,该标志为cv.WINDOW_AUTOSIZE。但是,如果将标志指定为cv.WINDOW_NORMAL,则可以调整窗口大小。当图像尺寸过大以及向窗口添加跟踪栏时,这将很有帮助。

cv2.namedWindow('image',cv.WINDOW_NORMAL)
cv2.imshow('image',image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、写入图像

使用函数cv.imwrite()保存图像。

第一个参数是文件名,第二个参数是要保存的图像。cv.imwrite('messigray.png',img)

这会将图像以PNG格式保存在工作目录中。

在下面的程序中,以灰度加载图像,显示图像,按s保存图像并退出,或者按ESC键直接退出而不保存。

import numpy as np
import cv2
img = cv.imread('dog2.jpg',0)
cv.imshow('image',img)
k = cv.waitKey(0)
if k == 27:   # 等待ESC退出
 cv.destroyAllWindows()
elif k == ord('s'): # 等待关键字,保存和退出
 cv.imwrite('dog2gray.png',img)
 cv.destroyAllWindows()

如果使用的是64位计算机,则必须k = cv.waitKey(0)按如下所示修改行:k = cv.waitKey(0) & 0xFF

4、结合使用matplotlib

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
plt.imshow(img, cmap = 'gray', interpolation = 'bicubic')
plt.xticks([]), plt.yticks([]) # 隐藏 x 轴和 y 轴上的刻度值
plt.show()

警告:OpenCV加载的彩色图像处于BGR模式。但是Matplotlib以RGB模式显示。因此,如果使用OpenCV读取彩色图像,则Matplotlib中将无法正确显示彩色图像。

总结

到此这篇关于python opencv 实现读取、显示、写入图像的方法的文章就介绍到这了,更多相关python opencv 图片读取显示写入内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python3+opencv3识别图片中的物体并截取的方法

    如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

  • Python+OpenCV图片局部区域像素值处理详解

    背景故事:我需要对一张图片做一些处理,是在图像像素级别上的数值处理,以此来反映图片中特定区域的图像特征,网上查了很多,大多关于opencv的应用教程帖子基本是停留在打开图片,提取像素重新写入图片啊之类的基本操作,我是要取图片中的特定区域再提取它的像素值,作为一个初学者开始接触opencv简直一脸懵,慢慢摸索着知道了opencv的一些函数是可以实现的像SetImageROI()函数设置ROI区域,即感兴趣区域,就很好用啊,总之最后是实现了自己想要的功能.现在看个程序确实是有点挫,也有好多多余的没必

  • python通过opencv实现批量剪切图片

    上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下. 做图像处理需要大批量的修改图片尺寸来做训练样本,为此本程序借助opencv来实现大批量的剪切图片. import cv2 import os def cutimage(dir,suffix): for root,dirs,files in os.walk(dir): for file in files: filepath = os.path.join(root

  • Python OpenCV实现图片上输出中文

    OpenCV中在图片上输出中文一般需要借助FreeType库实现.FreeType库是一个完全免费(开源)的.高质量的且可移植的字体引擎,它提供统一的接口来访问多种字体格式文件.但使用FreeType需要下载库并重新编译,过程麻烦一点. 在Python中,可以借助PIL(Python Imaging Library)模块实现,相对简单很多,需要做的只是对图像进行OpenCV格式和PIL格式的相互转换. # -*- coding: utf-8 -*- import cv2 import numpy

  • python3.6+opencv3.4实现鼠标交互查看图片像素

    在利用opencv进行图片处理时,经常需要查看图片关心区域或位置的像素数值,苦于没有应手的小软件,我用python3.6+opencv3.4简单编制一个小工具,供大家使用. 流程 1.建立标准的鼠标交互函数,当鼠标在图像上移动时,即时显示鼠标位置的像素数值(opencv像素为BGR格式). 2.建立图像窗口,绑定鼠标回调函数. 3.按下'q'键,退出. 4.仅需15行代码,就是这么简单. 代码 # -*- coding: utf-8 -*- import cv2 img= cv2.imread(

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • python使用opencv读取图片的实例

    安装好环境后,开始了第一个Hello word 例子,如何读取图片,保存图品 import cv2 import numpy as np import matplotlib.pyplot as plt #读取图片代码 img = cv2.imread('test.jpg',cv2.IMREAD_GRAYSCALE) #IMREAD_COLOR = 1 #IMREAD_UNCHANGED = -1 #展示图片 cv2.imshow('image',img) cv2.waitKey(0) cv2.d

  • python+opencv识别图片中的圆形

    本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这

  • 对Python+opencv将图片生成视频的实例详解

    如下所示: import cv2 fps = 16 size = (width,height) videowriter = cv2.VideoWriter("a.avi",cv2.VideoWriter_fourcc('M','J','P','G'),fps,size) for i in range(1,200): img = cv2.imread('%d'.jpg % i) videowriter.write(img) 以上这篇对Python+opencv将图片生成视频的实例详解就是

  • python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

    在处理图像的时候经常是读取图片以后把图片转换为灰度图.作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法. 首先导入包: import numpy as np import cv2 import tensorflow as tf from PIL import Image 方法一:在使用OpenCV读取图片的同时将图片转换为灰度图: img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE) print("cv2.imread(imgfile, cv2.I

随机推荐